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Abstract— Bipedal robots promise the ability to traverse
rough terrain quickly and efficiently, and indeed, humanoid
robots can now use strong ankles and careful foot placement
to traverse discontinuous terrain. However, more agile under-
actuated bipeds have small feet and weak ankles, and must
constantly adjust their planned footstep position to maintain
balance. We introduce a new model-predictive footstep con-
troller which jointly optimizes over the robot’s discrete choice
of stepping surface, impending footstep position sequence, ankle
torque in the sagittal plane, and center of mass trajectory,
to track a velocity command. The controller is formulated as
a single Mixed Integer Quadratic Program (MIQP) which is
solved at 50-200 Hz, depending on terrain complexity. We
implement a state of the art real-time elevation mapping
and convex terrain decomposition framework to inform the
controller of its surroundings in the form on convex polygons
representing steppable terrain. We investigate the capabilities
and challenges of our approach through hardware experiments
on the underactuated biped Cassie.

I. INTRODUCTION

While the ability to traverse unstructured terrain is a key

motivation for bipedal robots, navigating these environments

is an open problem. Humanoid robots can walk semi-

autonomously on discontinuous terrains such as cinder-block

piles, but rely on careful foot placement and decoupling

footstep planning and balance control [1], [2]. In contrast,

underactuated bipeds have limited ankle torque and small

feet, allowing for efficient, agile motion but limiting hori-

zontal center of mass (CoM) actuation. Therefore, footsteps

must be continuously re-planned to maintain balance in light

of disturbances and model error.

A simple yet powerful framework for online replanning

of stabilizing footstep sequences is to use the step-to-step

dynamics of the linear inverted pendulum model (LIP) [3] to

synthesize MPC or LQR footstep controllers. This approach

regulates walking speed without ankle torque by using foot

placement to affect the initial conditions of each contin-

uous single stance phase. Combined with output tracking

via inverse-dynamics based whole body torque controllers,

this approach has enabled dynamic and robust walking [4].

The Angular Momentum Linear Inverted Pendulum (ALIP)

model, in particular, has been shown to accurately describe

the bulk motion of walking even for robots with heavy legs

[5], and has been used to stabilize walking on sloped terrain

[6], synthesize specialized stair climbing controllers [7], and

walk on pre-selected constrained footholds [8]. We extend

this framework to rough terrain by modeling valid footholds

as convex planar polygons, and enforcing via a mixed-integer

formulation that each planned footstep lie in a valid foothold.

We transcribe our controller as a Mixed Integer Quadratic

Fig. 1. We present a model predictive foot placement controller for underac-
tuated bipedal walking with foothold constraints. Left: Cassie stepping over
a curb onto a grassy hill using the proposed controller and a real-time terrain
segmentation pipeline. Right: visualization of the terrain segmentation and
footstep plan during the step-up.

Program (MIQP). MIQPs are used extensively in robot

motion planning, but they can be difficult to solve at high

rates due combinatorial complexity in the planning horizon.

For this reason, existing MIQP footstep planners run at 1-5

Hz [9], limiting their applicability to underactuated walking.

In contrast, our controller achieves an average solve time

of less than 20 ms even in challenging scenarios by using

a low dimensional, linear dynamics model, planning over

a short footstep horizon, and heuristically pruning foothold

candidates.

We use a real-time elevation mapping and terrain de-

composition pipeline [10] to represent the terrain as convex

polygons online. As the components of this pipeline have

been applied primarily to quadrupeds [11] [12], we discuss

modifications needed for deployment on Cassie, and how

certain design choices and properties of the perception stack

affect the performance of the MIQP footstep controller. An

overview of our perception and control stack can be seen in

Fig. 2.

The key contributions of this paper are:

• An MPC style footstep planner which reasons over

discrete foothold selection, footstep sequence, center of

mass trajectory, and ankle torque, formulated as a single

MIQP which can be solved at up to 200 Hz to stabilize

underactuated walking on discontinuous terrain

• We extend an existing approach to vision-based real-

time elevation mapping and terrain segmentation to be

more robust to challenges inherent to underactuated

bipedal walking. We introduce a simple algorithm which

uses approximate convex decomposition [13] to find a

convex polygon decomposition of the steppable terrain.

• Evaluation of the proposed controller on hardware as a

full, vision integrated system. We demonstrate perceiv-

ing and stepping over curbs in real time, and discuss

how perception accuracy limits the robustness of the

controller.



Fig. 2. Block diagram of the control stack used to achieve perceptive locomotion on unstructured terrain. A real-time perception pipeline provides convex
stepping stone constraints to our proposed MIQP footstep controller, which updates the commanded foot position at 50-200 Hz to maintain balance. This
stack allows for foot placement control of underactuated bipeds in previously unseen environments by sensing the terrain on the fly and providing a terrain
representation to the walking controller.

II. RELATED WORK

A. MIQP Footstep Planning

Deits and Tedrake introduced the use of MIQPs for

footstep planning in [14] by decomposing safe terrain into

a collection of convex polygons, and using integer variables

to assign every footstep to a polygon. Tonneau et al. [15]

provide a convex approximation of this problem as a linear

program, and Song et al. [16] show how both the mixed

integer and linear programming formulations can be made

more efficient by using a simplified trajectory planner to

prune irrelevant footholds. In contrast to our work, these

works only consider geometric and quasistatic stability crite-

ria, and focus on long horizon footstep planning which may

take seconds to solve.

MIQP footstep planning has also been used for quadruped

robots. In [17], Risbourg et al. use the convex relaxation from

[15] online to project the desired footstep sequence to the

closest convex footholds, subject to kinematic constraints.

In [9], Corberes et al. incorporate this footstep planning

strategy as an online foothold scheduler at 1-5 Hz with

vision in the loop. Due to the low planning rate, and

the lack of dynamics constraints in the contact scheduler,

they rely on a separate whole body MPC to find feasible

robot trajectories. Aceituno-Cabezas et al. [18] formulate a

full quadruped trajectory optimization problem using mixed

integer constraints for assigning footsteps to footholds and

to approximate the nonlinear manifold constraint for 3D ro-

tations. Their trajectory optimization features both kinematic

and dynamics constraints, but unlike our work, does not re-

plan the footholds in real time.

B. Foot placement control for underactuated walking

A family of controllers has emerged which use LIP based

linear control policies [19] [4] or MPC footstep planners

[6], [20] to generate footstep plans which are realized by

tracking outputs such as CoM height, swing foot position,

and joint angles with some form of Quadratic Program-

ming (QP) based whole-body torque control [21] . These

controllers view the continuous dynamics of each stance

phase as approximated by the autonomous LIP dynamics,

and stabilize the walking motion by placing the next footstep

in the appropriate position to arrest excess momentum accu-

mulated during single stance. Our controller adopts the same

philosophy as these works, but extends the applicability of

this approach beyond flat or mildly sloped terrain to terrain

which can reasonably be modeled as a collection of convex

polygons.

III. PRELIMINARIES

The controller is implemented in two coordinate frames. Y
is the yaw frame, representing a rotation of the world frame

about the z axis to match the yaw angle of the floating base.

S is the stance frame. It is an identity rotation from the

yaw frame, with its origin located at the bottom center of

the current stance foot. We follow a x-forward, y-left, z-up

convention.

A. Continuous ALIP model

The ALIP model is an approximation of the CoM dynam-

ics of the robot during single stance based on the LIP [3],

which uses angular momentum in place of CoM velocity to

describe the speed of the robot. We direct the reader to [6] for

a derivation of the 3D ALIP dynamics assuming piecewise

planar terrain with a passive ankle. To take full advantage of

Cassie’s blade foot, we include ankle torque in the sagittal

plane, u as an input to the continuous time ALIP model. The

state of the ALIP model consists of the horizontal position

of the center of mass and the horizontal components of the

angular momentum of the robot about the contact point. The

dynamics of the ALIP with ankle torque are given by





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where m is the robot’s mass, and H is the height of the CoM

above the terrain, and all quantities are in the stance frame.

B. ALIP Reset Map

The reset map enables control of the ALIP through foot

placement by relating the positions of the robot’s feet to

a discrete jump in the ALIP state. On hardware, a dou-

ble stance phase between footsteps helps avoid oscillations

caused by rapidly unloading Cassie’s leaf springs. Therefore

we derive a reset map from x−, the ALIP state just before

footfall, to x+, the ALIP state just after liftoff, including

the double stance phase. We start by integrating the double

stance dynamics, and then we apply a coordinate change to

express the ALIP state with respect to the new stance foot.

During double stance, we treat the center of pressure (CoP)

as a control input, and integrate the resulting dynamics with

an assumed input trajectory,

pCoP = p− +
t

Tds

(p+ − p−) (2)

where p− and p+ are the pre- and post-touchdown stance

foot positions in the yaw frame, Tds is the duration of double

stance, and t is the time since the beginning of double stance.

We assume the CoM velocity vCoM is approximately parallel

to p+ − p−. This is reasonable, as the robot is generally

stepping in the direction it is walking. Under this assumption,

(pCoP − p−) ×mvCoM ≈ 0, so angular momentum about

p− and pCoP are equal.

LCoP = Lp
−

+ (pCoP − p−)×mvCoM ≈ Lp
−

. (3)

By treating the CoP as a virtual contact point and applying

(1), we arrive at the continuous dynamics
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The solution to (4) with the input (2) and x(0) = x− is a

first order hold discretization of (4) over double stance,
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The remainder of the reset map is just a coordinate change,
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with the fp subscript denoting "foot placement".

By sequentially applying (5) then (7), we arrive at a reset

map from x− to x+ which is linear in x−, x+, p− and p+,
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[
Ar (−Bds −Bfp) (Bds +Bfp)
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Fig. 3. Illustration of key MPFC problem data and decision variables
for a horizon of 3 stance phases. The green polygons P1 and P2 are the
foothold constraints. The black lines extend from the stance foot to the
CoM position at the beginning and end of each single stance phase, and the
CoM trajectories for each single stance phase are shown as alternating blue
and red paths. The footstep positions are labeled p1 – p3, where p1 is the
current stance position and p2 and p3 are decision variables.

IV. MIQP MODEL PREDICTIVE FOOTSTEP CONTROLLER

The following section details the formulation of the MPFC

as an MIQP. We simultaneously plan the footstep position,

input, and ALIP trajectory over a horizon of N stance

periods, satisfying the continuous dynamics (1) and discrete

reset map (8). Each footstep is constrained to lie in a

steppable region Pi, represented as a 2D polygon embedded

in 3D space. We discretize each single stance period of

fixed duration Tss into K knot points in order to apply

intra-mode workspace constraints on the center of mass.

For convenience, we index state knot points by their stance

period and their order within the stance period, so the kth

knot point of the nth stance period would be denoted xn,k.

An illustration of key problem parameters is shown in figure

Fig. 3.

The MIQP formulation features continuous variables for

the state and input trajectories, x and u, as well as the stance

foot position for each step, p. We assign one binary variable,

µn,i per foothold per step, indicating whether the foothold

is used for that step. We can now introduce the problem

statement of the MPFC (9), and dedicate the rest of this

section to elaborating on the cost and constraints.

minimize
x,u,p,µ

N∑

n=1

K−1∑

k=1

(
x̃T
n,kQx̃n,k + uT

n,kRun,k

)
+

x̃T
N,KQf x̃N,K

(9a)

subject to xn,k+1 = Adxn,k +Bdun,k (9b)

xn+1,1 = Arxn,K +Br(pn+1 − pn) (9c)

µn,i = 1 =⇒ pn ∈ Pi (9d)
∑

i∈I

µn,i = 1 (9e)

µn,i ∈ {0, 1} (9f)

CoM, Input, and Footstep limits

where x̃ = x − xd is the error from a desired reference

trajectory, and Pi, i ∈ I are the footholds.



A. Dynamics and Reset Map Constraints

The dynamics constraint (9b) is the discretization of (1)

as a sampled system. Letting ∆t = Tss/(K − 1), then

Ad = exp(A∆t) (10)

Bd = A−1 (Ad − I)B. (11)

The reset map (9c) is (8) expressed with MPFC indexing.

B. Foothold Constraints

Each convex polygonal foothold is defined by a plane

fT
i p = bi and a set of linear constraints Fip ≤ ci. The logical

constraint (9d) is enforced with the big-M formulation

Fipn ≤ ci +M(1− µn,i) (12a)

fT
i pn ≤ bi +M(1− µn,i) (12b)

−fT
i pn ≤ −bi +M(1− µn,i). (12c)

With appropriately normalized Fi and fi, (12) corresponds

to relaxing each foothold constraint by M meters when µi =
0. Since our problem scale is on the order of 2 m, we choose

M = 10 for simplicity1. The binary constraint (9f) and the

summation constraint (9e) imply that exactly one foothold

must be chosen, and the remaining footholds relaxed.

C. State, Input, and Footstep Limits

We add a bounding box constraint on the CoM position

with conservative bounds on yCoM to avoid hip-roll joint

limits. We limit the ankle torque to 5 Nm, which is what

the OSC can reliably provide without foot slip. Finally, we

add a constraint to prevent the feet from crossing the x− z
plane.

D. Reference Design

Given a desired average horizontal velocity, vd ∈ R
2, we

generate a reference trajectory for the MPFC by finding a

periodic ALIP trajectory which achieves this average velocity

with a user-specified stance width l. In addition to letting us

tune the stance width directly, this also ensures the desired

position and angular momentum are consistent with the

ALIP dynamics without using ankle torque. First, the gait

parameters vd and l are encoded into a footstep sequence

pn+1 = pn + vdTs2s + σnlêy (13)

where Ts2s = Tss + Tds and σn = −1, 1 for left and

right stance, respectively. To find the corresponding periodic

ALIP trajectory, we define the step-to-step dynamics, which

combine the single stance dynamics and reset map to arrive at

a discrete dynamical system which has state xn,1, the ALIP

state at the beginning of single stance, and takes Spn+1 as

an input. The dynamics are

xn+1,1 = exp(ATs2s)xn,1 +Br
Spn+1. (14)

We find the reference gait by substituting (13) into (14) and

rolling out the dynamics for two stance modes, then solving

for x1,1 = x3,1
2.

1M must be large enough for every relaxed foothold to contain every
unrelaxed foothold, but should otherwise be small for numerical stability

2This is a specific choice of Period-2 orbit [4] which achieves symmetry
between left and right stance.

Fig. 4. We realize the planned footstep footstep positions by constructing
a swing foot trajectory through the way points w0, w1, and w2, where w0

is the position of the swing foot at the beginning of the single stance phase,
and w2 is the most recent MPFC solution for the incoming stance foot.

V. OUTPUT TRACKING VIA OPERATIONAL SPACE

CONTROL

To realize the planned walking motion on the physical

robot, MPC outputs are tracked with an inverse-dynamics

based operational space controller (OSC). We use the same

quadratic program as our previous Cassie examples [22] [23].

This section describes the construction of the task space

trajectories tracked by the OSC.

A. Center of Mass Reference

Given a footstep plan from the MPC, we construct a CoM

trajectory which enforces the local planarity assumption of

the ALIP model by constructing the least-inclined plane pass-

ing through the current and imminent stance foot positions.

Letting p = Spn+1, the plane parameters are the solution to

[
px py
−py px

] [
kx
ky

]

=

[
pz
0

]

. (15)

After solving for kx and ky , we define the reference trajec-

tory for the CoM height in the stance frame as

zc(t) = H + kxxc(t) + kyyc(t). (16)

B. Swing Foot Reference

We generate swing foot trajectories by constructing a

spline between the initial and final foot location during

swing. First we generate an additional way point above the

line connecting the initial and final foot location, as shown

in Fig. 4. Then, as a heuristic for generating swing foot

trajectories which will be tractable to track despite Cassie’s

leaf springs, we construct a minimum-snap spline through the

way points. The motivation for this is that when considering

the spring dynamics, the foot position is relative degree four

to the motor torques.

C. Constant references

We track a constant pelvis roll and pitch of zero, and

a constant hip yaw (abduction) angle of zero. We track a

commanded pelvis yaw rate from the remote control, and

a swing toe angle so that Cassie’s foot makes an angle of

arctan kx with the ground.

VI. PERCEPTION STACK FOR HARDWARE EXPERIMENTS

Here we describe the perception stack used to translate

point clouds from the Intel RealSense D455 depth camera

to convex foothold constraints in real time. The perception

stack architecture is shown in Fig. 2.



A. State Estimator

We use the contact-aided invariant extended Kalman filter

developed by Hartley et al. [24] to estimate the pose and

velocity of the floating base. Due to the unobservability of

Cassie’s global position, we experience state estimator drift,

especially vertically, which is accounted for in the elevation

mapping node as described below.

B. RealSense D455 Depth Camera

The RealSense is mounted to Cassie’s pelvis, looking

down at the terrain in front of the robot (Fig. 6). We use

the realsense-ros3 ROS package to publish point-cloud

data at 30 Hz, applying a decimation filter to reduce the

number of points sent to the elevation mapping node.

C. GPU Based Elevation Mapping

We use the GPU based elevation mapping framework

developed by Miki et al. in [10] to construct a robot-centric

elevation map of the terrain. This framework represents the

terrain as a grid around the robot, with the height of each

cell updated by point cloud measurements through a Kalman

filter. The quality of the convex planar decomposition, and

ultimately the stability of the controller, depends on the

accuracy of the elevation map, so we make several Cassie-

specific modifications to [10], outlined below.

1) Point Cloud Preprocessing: To eliminate spurious

measurements of the Cassie’s front shell, we crop out a

band of points along the near edge of the depth camera

frame. Additionally, we crop out points outside user-specified

minimum and maxium depths. We mask out Cassie’s legs by

removing all points from a bounding box extending up and

back from the front of each foot.

2) Drift Correction using the Stance Foot: While [10]

features a floating base drift correction feature which com-

pares the height of the input point cloud to the height of the

existing map, we found this to be insufficient for the severity

of floating base drift we experience on Cassie. Because

Cassie’s state estimate experiences a consistent upward drift

due to impacts during touchdown, and because we have only

one depth camera on the front of the robot, terrain under and

behind the robot is estimated to be lower than in reality. To

correct for this, before each point cloud update, we adjust the

height of the elevation map by adding the height difference

between the elevation map and the current stance foot.

D. Planar Segmentation

We use the planar segmentation module provided by [10]

(but described in [11]) to segment the elevation map into

planar polygons. First, several filters are applied to the

elevation map. In addition to the de-noising median filter

described in [11], we apply an erosion filter and Gaussian

blur to the height map to smooth out the terrain into its broad

features. Next, each pixel in the elevation map is classified as

steppable or not based on surface inclination and roughness

in a neighborhood around the pixel. From this classification,

3https://github.com/IntelRealSense/realsense-ros

Fig. 5. Illustration of the convex polygon decomposition process. Left:
original nonconvex polygons with holes. Middle: approximate convex de-
composition of the original polygons. Right: convex inner approximation
of the approximately convex components, with small components filtered
out. When tuning the convex decomposition, there is a trade off between
maximizing the total traversable area and maintaining a low number of
convex polygons.

connected components of steppable terrain are identified, and

their outline is extracted as a 2D polygon embedded in 3D

space, with a safety margin of 5 cm. It should be noted that

the effective safety margin is higher, as the Gaussian blur

rounds off sharp corners in the elevation map.

E. Convex Polygon Decomposition

In general, the planar segmentation yields non-convex

polygons with holes (caused, for example, by small obstacles

or other unsteppable areas), but we require convex foothold

constraints for the MPFC. We use a two stage process (Fig. 5)

to find a set of convex polygons whose union approximately

matches the original non-convex polygon. This avoids creat-

ing many small triangles like an exact convex decomposition

would, decreasing the number of integer variables in the

MPFC.

First, we perform approximate convex decomposition

(ACD)[13] on each polygon. ACD returns a decomposi-

tion of the original region into polygons which are τ -

approximately convex, with τ representing the depth of the

largest concave feature. After filtering out polygons with area

less than 0.1 m2, we find a convex inner-approximation of

these nearly convex polygons with a greedy approach we

name the whittling algorithm (Algorithm 1), after the way

it makes incremental cuts to the polygon. We initialize the

output polygon, P as the convex hull of the original polygon,

then take the intersection of P with greedily chosen half-

spaces until no vertices of the original polygon are contained

in P . While this does not guarantee containment of P in the

original polygon, we do not see violations in practice.

Algorithm 1 Whittling Algorithm

Require: Input polygon vertices V = {v0 . . . vn}
procedure WHITTLE(V )

P ← ConvexHull(V )
for all vi do

if vi ∈ Interior(P) then

H = MakeCut(vi, P)

P ← P ∩H
return P

MakeCut(P, v) is a QP which finds a such that the half-

space H = {x | aT (x − v) ≤ 0} contains as much of P as

possible, as measured by minimizing the squared hinge loss
∑

max(aT (pi − v), 0)2, where pi are the vertices of P .



Fig. 6. Example of the elevation mapping and planar polygon extraction process showing the field of view of the Intel RealSense. Frame (a) shows the
raw point-cloud data as seen in the world frame. Our point cloud pre-processing step (b) crops out potentially noisy measurements of Cassie’s front shell
and a bounding box around the robot’s feet. Frame (c) shows the raw elevation map constructed from the cropped point cloud. Frame (d) Shows the map
after applying a Gaussian blur and median filter, as well as the steppable planar polygon extracted from the map. (e) Shows the extracted polygon by itself.

VII. RESULTS

Both layers of the control stack are implemented in C++

using the Drake [25] systems framework and mutlibody

kinematics/dynamics. The MPFC and OSC use Drake’s

interfaces to the Gurobi and OSQP solvers respectively. The

controllers are run in separate processes and communicate

over LCM [26]. This abstracts the controller from source of

the robot state information, allowing us to test identical code

in simulation or on hardware. We use a horizon of 3 stance

periods for the MPFC in order to plan multiple footsteps

ahead.

A. Simulation Experiments

Fig. 7. Cassie descending and ascending a set of 1 m. long, 15 cm.
tall steps with a pre-programmed velocity profile in simulation. Cassie
tracks the commanded velocity with occasional deviations to satisfy foothold
constraints.

To highlight the capabilities of the controller in an ide-

alized environment, we demonstrate Cassie ascending and

descending steps in simulation (Fig. 7). While we model

Cassie as realistically as possible, including springs, reflected

inertia, motor curves, and realistic joint limits, the MPFC

and OSC have access to ideal state and terrain information.

Cassie is able to track a commanded velocity of 0.75 m/s on

meter long stairs, and automatically deviate from the velocity

command to satisfy foothold constraints. Given Cassie’s

limited ankle torque, walking can only be stabilized on steps

long enough to use footstep placement as the primary control

input, 1 m for a commanded speed of 0.75 m/s, and 50 cm for

a commanded speed of 0.5 m/s. Additionally, for steps taller

than 15 cm, the ALIP model becomes a poor approximation

of the dynamics, and the trailing swing foot starts to clip

the stairs when stepping up. We witnessed this effect more

severely on hardware, and discuss it further in Section VIII.

B. Hardware Experiments

For hardware deployment, we run the high speed state

estimator and OSC loops on Cassie’s onboard NUC computer

and send joint torque commands to Cassie’s target PC over

UDP. The NUC is upgraded from stock to achieve better

performance 4. The MPFC and perception stack run on an

offboard ThinkPad p15 Laptop with an 8-core, 2.3 GHz

Intel 1180H processor and 24 GB of RAM. The laptop is

carried in a backpack by one of the safety bar carriers and

networked with the NUC over ethernet for LCM and ROS

communication.

We demonstrate our walking controller ascending and

descending a 9 cm. curb with vision in the loop. One

trial can be seen in Fig. 8, and additional trials can be

seen in the supplemental video. While we achieved multiple

successful trials, several interactions between the controller

and perception stack make the system brittle in practice, as

detailed in Section VIII.

1) Controller Solve Times: Since the computational com-

plexity of the MPFC scales with the number of foothold con-

straints, and fast re-planning is required for stable walking,

we analyze the effect of the number of potential footholds

on solve time (Fig. 9). While the minimum, mean, and 90th

percentile solve times are similar, and all increase slowly up

to 9 footholds, the maximum solve time is 2.5-5 times higher.

These occasional long solve times can be up to 10 percent

of a single stance phase, and introduce torque spikes when

tracking commanded foot position with high feedback gains.

We also examine the relationship between foothold constraint

activation and solve time. When the MPFC solution contains

a footstep on a foothold boundary, the convex relaxation of

the MIQP is no longer optimal, leading to longer solve times.

This scenario makes up 4.9 percent of the data in Fig. 9, and

will increase with more challenging terrains.

VIII. IMPLEMENTATION LESSONS

In this work, we synthesized a number of mature or

maturing ideas. We combined LIP based footstep control and

MIQP based kinematic footstep planning to design a novel

4https://github.com/DAIRLab/cassie_documentation/wiki/Upgrading-the-
Intel-NUC



Fig. 8. Motion tiles showing Cassie stepping up (top row) and then down (bottom row) a curb using the perception and control stack outlined in this
paper. Neither the controller nor the perception stack have any prior knowledge of the environment.

Fig. 9. Analysis of MPFC solve times over 6 trials totaling 3:35 minutes
of walking and 8 surface transitions. Left: Plot of solve time vs. the number
of foothold constraints. Solve time increases Right: Box and whisker plot
showing the relationship between constraint activation and solve time. Solve
time increases when the optimal footstep is on the boundary of a stepping
stone, as the convex relaxation of the MIQP is no longer optimal

walking controller. We informed this controller with a state of

the art elevation mapping and convex planar decomposition

framework. Here, we discuss successes and shortcomings of

these methods and how they integrate into the full perceptive

locomotion system.

MPFC demonstrates yet again the effectiveness of (A)LIP

based foot placement control for underactuated walking.

When using MPFC on flat terrain, it is capable of achiev-

ing robust, dynamic walking similar to our baseline ALIP

walking controller based on [5]. Our simulation results also

show that with ideal terrain information, incorporating mixed

integer footstep constraints expands the capabilities of ALIP

based walking control to discontinuous terrain. Fast solve

times point to the fact that more advanced solvers are making

it possible to use MIQPs for high-rate control tasks.

Where we experienced challenges was our controller’s

sensitivity to perception error and noise. The GPU based

elevation mapping framework has so far been applied pri-

marily to quadruped robots, which are lighter, more stable,

and less susceptible to the effects of impacts when walking.

Additionally, existing controllers with real-time perceptive

footstep planning generally plan footholds about once per

stride [1], [9], [11], making them less susceptible to noise in

the perception system. The MPFC foothold constraints, on

the other hand, are updated in real time, and are the direct

output of a 30 Hz perception system. Therefore the whole

system’s performance is dependent on accurate, consistent

perception.

A. Elevation Mapping Artifacts

Errors and noise in the elevation map can propagate

through the perception pipeline to the controller, leading

to failure. When walking on grass, for example, the stance

foot drift correction conflicts with the height of the point

cloud, as Cassie’s foot rests below the top of the grass. This

leads to discontinuities in the height map when walking on

flat grass. Additionally, the controller is sensitive to errors

in the estimated ground height, which alter the swing foot

touchdown time, ultimately causing the swing-foot to miss

its commanded target.

B. Safety Margins

Because we model Cassie’s feet as points in the MPFC, we

rely on a safety margin in the planar segmentation algorithm

to account for the length of the blade foot. Tuning this margin

is quite difficult in practice, as there is a trade off between

collision risk and traversable area. Insufficient margin leads

to collisions when stepping up onto a higher surface, but

unnecessary margin leads to terrain gaps too large to cross

at reasonable walking speeds. We experienced both of these

failure modes with the same margin, depending on the

commanded velocity and initial conditions of the step. While

we attempted shaping the swing foot trajectory to avoid col-

lisions, these trajectories were difficult to track due to large

accelerations needed to start the swing phase moving away

from the target position. The walking speed dependence of

this effect increased the skill and concentration required from

the operator. Future work will consider reformulating the

MPFC cost function to address these challenges, as well as

allowing for asymmetric safety margins in the planar polygon

contour extraction process depending on the relative height

of each surface.

C. Perception Noise

When the planned footsteps are at or near the boundary

of a foothold, noise in the robot state or foothold boundaries

can cause sudden jumps in the impending footstep position

by changing which foothold sequence is optimal. To avoid

causing large jumps which would be impossible to track,

we introduce an additional bounding box constraint on the

next footstep position. The constraint is applied when 250ms

remain in the swing phase, and constrains the upcoming



footstep to a bounding box with half length 10 cm, centered

at the footstep solution from the most recent MPFC solve.

IX. CONCLUSIONS AND FUTURE WORK

We present a new model predictive footstep controller

which allows underactuated bipeds to walk on constrained

terrain without predefined foothold sequences. We formulate

our controller as a single Mixed Integer Quadratic Program

which can be solved online faster than the 30 Hz rate of

the realtime perception system used to model the terrain as

convex polygonal footholds. We demonstrate the controller

on Cassie with a fully integrated vision system.

Future work will focus on improving the reliability of the

perception pipeline to give a consistent and accurate terrain

representation while maintaining its real-time performance,

and improving the robustness of the MPFC and OSC to

perception error.
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