
1

Perceptive Mixed-Integer Footstep Control for
Underactuated Bipedal Walking on Rough Terrain

Brian Acosta and Michael Posa

Abstract—Traversing rough terrain requires dynamic bipeds
to stabilize themselves through foot placement without stepping
in unsafe areas. Planning these footsteps online is challenging
given non-convexity of the safe terrain, and imperfect perception
and state estimation. This paper addresses these challenges with
a full-stack perception and control system for achieving under-
actuated walking on discontinuous terrain. First, we develop
model-predictive footstep control (MPFC), a single mixed-integer
quadratic program which assumes a convex polygon terrain
decomposition to optimize over discrete foothold choice, footstep
position, ankle torque, template dynamics, and footstep timing at
over 100 Hz. We then propose a novel approach for generating
convex polygon terrain decompositions online. Our perception
stack decouples safe-terrain classification from fitting planar
polygons, generating a temporally consistent terrain segmenta-
tion in real time using a single CPU thread. We demonstrate the
performance of our perception and control stack through outdoor
experiments with the underactuated biped Cassie, achieving state
of the art perceptive bipedal walking on discontinuous terrain.
Supplemental Video: (Short [1], Long [2]).

I. INTRODUCTION

Bipedal robots can theoretically traverse challenging terrain
by breaking contact with the ground to clear obstacles, making
them potentially useful for disaster response, planetary explo-
ration, and deployment in cluttered homes. However, dynamic
bipedal walking over rough terrain remains challenging for
today’s perception and control algorithms. To traverse rough
terrain, bipeds must quickly identify safe footstep positions
which maintain the robot’s balance and make progress in the
desired walking direction. This is a highly coupled problem
where online terrain estimation is used to control an underactu-
ated hybrid system. Despite the existence of mature techniques
for both underactuated walking, and footstep planning over
constrained footholds, few works attempt to address both
problems at once. Often, underactuated gaits are stabilized
within a fixed sequence of stepping-stone constraints [3–5],
or rough terrain is assumed to have varying height but no
unsafe footstep positions [6, 7]. Without these combinatorial
aspects, the optimal control problem is easier to solve, but we
have an incomplete solution for walking on rough terrain.

This paper presents Model Predictive Footstep Control
(MPFC), a model-predictive-control-style footstep planner
which reasons over many of the relevant decision variables
for underactuated walking. In addition to discrete foothold
selection, MPFC optimizes over the continuous footstep posi-
tions, center of mass trajectory, ankle torque, and gait timing.

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE-
1845298. Toyota Research Institute also provided funds to support this work.

The authors are with the GRASP Laboratory, University of Pennsylvania,
Philadelphia, PA 19104, USA {bjacosta, posa}@seas.upenn.edu

Fig. 1: The bipedal robot Cassie walks up and down brick
steps using the perception and control framework developed
in this paper. Left: the physical robot and steps. Middle: an
elevation map of the steps. Right: a convex decomposition
of the safe terrain. Our MPC footstep planner constrains the
center of Cassie’s foot to a convex polygon foothold for
each planned footstep. These convex footholds are generated
online via Stable Steppability Segmentation, our novel terrain
segmentation approach designed for temporal consistency of
the safe terrain classification.

MPFC is one of the first controllers to simultaneously optimize
over the discrete choice of stepping surface and the robot’s
dynamics in real time 1, and to our knowledge, this paper
and its precursor [9] represent the first deployment of such a
controller on hardware.

We use binary variables to assign the center of each foot-
step to a convex foothold [11], providing a straightforward
extension of linear-quadratic MPC footstep controllers [12]
to discontinuous terrain, with the consequence that optimal
control problem graduates in difficulty from a Quadratic Pro-
gram to a Mixed-Integer-Quadratic Program (MIQP). MIQPs
have been used extensively for offline trajectory optimization
over broken terrains [13–15], but due to their combinatorial
complexity in the planning horizon, they have seen much less

1[8] was published concurrently with the conference version of this pa-
per [9] and uses artificial potentials to snap footsteps onto nearby footholds,
and [10] was published shortly after [9], and enforces stepping stone con-
straints with offline-generated signal-temporal-logic objectives.

2

Fig. 2: The perception and control stack proposed in this paper to achieve underactuated walking over discontinuous terrain. Our
perception stack (A) generates convex polygon foothold constraints for MPFC, a mixed-integer MPC style footstep planner (B).
MPFC sends the next footstep, step timing adaptation, and ankle torque plan to a low-level operational-space-control process
(C) which performs kHz level torque control.

use in real-time control. Our controller achieves solve times of
less than 10 milliseconds by using a low dimensional, linear
dynamics model, planning over a short footstep horizon, and
eliminating foothold candidates far from the robot.

A significant barrier to deploying mixed-integer footstep
planning methods on hardware is the need for a convex planar
polygon decomposition of the terrain around the robot. As we
discovered during the hardware experiments for our original
mixed-integer footstep planning work [9], and as others have
noted in recent literature [16], explicit plane segmentation
approaches suffer from poor temporal consistency. This desta-
bilizes online footstep planners with constraints that "flicker"
into and out-of existence.

We propose a new approach to terrain segmentation and
convex decomposition. We argue that requiring a one-to-one
correspondence between foothold constraints in the controller
and real planar polygons in the environment [16, 17] is overly
restrictive and brittle. Our approach recognizes that planar
polygons are a modeling choice used to support optimization
based control, rather than a hard safety requirement. By focus-
ing on avoiding terrain which is clearly unsafe, we arrive at a
simple algorithm which is robust to non-planar surfaces and
more temporally consistent than explicit plane segmentation.

Our perception stack consists of two stages. The first stage,
called Stable Steppability Segmentation (S3), uses local safety
criteria and a simple hysteresis mechanism to classify elevation
map pixels as safe or unsafe, resulting in a binary steppa-
bility mask. The second stage of our segmentation algorithm
generates a set of convex polygons approximating the safe
terrain identified by S3. We perform approximate convex
decomposition[18], then take a convex inner-approximation of
the resulting polygons before finally fitting plane parameters to
these convex polygons using the original elevation map. While
the S3 implementation in this paper uses intuitive heuristic
criteria for steppability classification, the general algorithm
supports any number of criteria, allowing for composition with

learning-based approaches and higher-level obstacle detectors.
An earlier version of MPFC was presented in [9], with

limited hardware results due to the brittleness of plane segmen-
tation. This article extends that work by introducing our new
terrain segmentation approach, improving our MPFC formu-
lation, and presenting hardware experiments that demonstrate
the capabilities of our perception and control stack.

The primary contributions of this paper are:

1) We present a new terrain segmentation framework which
is faster and more temporally consistent than explicit
plane segmentation.

2) We propose a new MPFC formulation which jointly
optimizes over the robot’s discrete choice of stepping
surface, footstep plan, ankle torque, and step duration,
using the step-to-step ALIP dynamics. Compared to [9],
we include optimization over the initial stance duration,
improving the system’s ability to walk over complex
terrains. We reduce the number of MPFC variables by
restricting ankle torque to the initial single-stance phase,
and using a step-to-step dynamics approximation for the
subsequent stance phases. This variable count reduction
results in shorter solve times.

3) The resulting full-stack system is validated with hard-
ware experiments that demonstrate real–time percep-
tive, dynamic, underactuated walking over constrained
footholds.

II. RELATED WORK

Our controller and perception stack build on several mature
or maturing techniques such as mixed–integer–convex foot-
step planning, (A)LIP based footstep control, and elevation
mapping for mobile-robot navigation. We review these topics,
focusing on features of our approach compared to what exists
in the literature.

3

A. Footstep Planning over Rough Terrain

The literature on safe bipedal footstep planning mainly
considers humanoid robots with large feet [19], which allow
a feasible center of mass trajectory to be planned and tracked
for any reasonable footstep plan. These plans can be generated
quickly via motion planning approaches like graph search [20]
or mixed–integer–convex programming [11]. However, be-
cause footsteps are not re-planned at high rates, robots using
decoupled approaches walk slowly to avoid violating zero-
moment-point constraints [21].

1) Mixed-Integer Footstep Planning: Deits and Tedrake
introduced the use of MIQPs for footstep planning in [11] by
decomposing safe terrain into a collection of convex polygons,
and using integer variables to assign every footstep to a
polygon. Tonneau et al. [22] provide a convex approximation
of this problem as a linear program, and Song et al. [23] show
how these approaches can be made more efficient by using
a simplified trajectory planner to prune irrelevant footholds.
In contrast to our work, these works focus on long horizon
footstep planning, and only consider geometric criteria such
as workspace constraints, and quasistatic stability criteria, such
as the existence of a feasible center of mass trajectory which
lies completely above the support polygon.

MIQP footstep planning has also been used for quadruped
robots. In [24], Risbourg et al. use the convex relaxation
from [22] online to project the desired footstep sequence to
the closest convex footholds, subject to kinematic constraints.
In [16], Corberes et al. incorporate this footstep planning
strategy as an online foothold scheduler at 1-5 Hz with vision
in the loop. Due to the low planning rate, and the lack of
dynamics constraints in the contact scheduler, they rely on a
separate whole body MPC to find feasible robot trajectories.
Aceituno-Cabezas et al. [13] formulate a full quadruped tra-
jectory optimization problem using mixed integer constraints
for footholds and to approximate the nonlinear manifold
constraint for 3D rotations as piecewise linear. Their trajectory
optimization features both kinematic and dynamics constraints,
but does not re-plan the footholds in real time.

B. Footstep Control for Underactauted Bipeds

Dynamic walking research assumes minimal ankle actu-
ation, instead viewing walking as controlled falling, where
momentum can only be added or removed from the system
by stepping to the appropriate spot on the ground. These
approaches generally assume flat or constantly sloped ground
without obstacles to synthesize reactive stepping controllers
based on the linear inverted pendulum [25–27]. This approach
regulates walking speed without ankle torque by using foot
placement to affect the initial conditions of each single stance
phase. Combined with output tracking via inverse-dynamics
based whole body torque controllers, this approach has enabled
dynamic and robust walking. The Angular Momentum Linear
Inverted Pendulum (ALIP) model, in particular, has been
shown to accurately describe the bulk motion of walking even
for robots with heavy legs [28], and has been used to stabilize
walking on sloped terrain [12], synthesize specialized stair

climbing controllers [29], and walk on pre-selected constrained
footholds [5].

C. Safe Terrain Estimation for Legged Locomotion
Elevation maps are a convenient intermediate terrain rep-

resentation for legged locomotion due to their ability to fuse
multiple sensor streams over time in a compact representa-
tion [30–32]. This has lead to a proliferation of algorithms
for extracting convex planar polygons from elevation maps
via plane segmentation [32, 33]. However, these approaches
segment each elevation map independently, leading to issues
with temporal consistency [9, 16], especially because elevation
mapping is vulnerable to artifacts from drift in the floating base
position estimate [34]. To generate temporally consistent poly-
gon constraints in real-time, despite these challenges imposed
by legged locomotion, Bin et al. develop a GPU accelerated
semantic mapping framework [35] to directly estimate the state
of polygonal terrain from depth images. This approach has
advantages for stair climbing, where the terrain is known to
be planar and precise foot placement is required, but could
struggle in outdoor environments where the ground is not
perfectly flat.

On unstructured terrain, some works compute heuristic
costs from the elevation map to guide planning. McRory et
al. encode various traversability costs into a graph search
algorithm for humanoid footstep planning [36]. Jenelten et al.
add a nonconvex cost on the gradient of the elevation map at
the planned stance foot locations in their MPC formulation for
quadrupedal walking [37]. These heuristic costs recognize that
planar polygons are a modeling choice to support optimization
based control, not a necessary condition for steppability. Our
terrain segmentation approach adopts a similar philosophy by
classifying elevation map cells as steppable or not without
regard for global planarity, but still achieves global optimality
in the MPC problem by transforming this classification back
into mixed-integer convex terrain constraints.

D. Reinforcement Learning for Legged Locomotion
Sim-to-Real reinforcement learning (RL), where control

policies are learned in simulation and then deployed on hard-
ware, has seen increasing success in recent years, especially
for legged locomotion. These policies can be made robust and
performant through a combination of domain randomization
and adaptation. For example, Siekmann et al. learn a blind
stair climbing controller for Cassie in [38], and Duan et al. use
a similar policy to walk on constrained footholds in [39]. With
additional vision modules, they achieve perceptive locomotion
over boxy terrain as well [40]. Because RL can struggle
with sparse footholds, Jenelten et al. proposed a hierarchical
approach where a model-based footstep planner guides a lower
level RL tracking policy [41]. Yu et al. propose the opposite,
where RL learns high level strategies like gait selection and
foot placement, and MPC generates and stabilizes correspond-
ing full body motions [42]. This strategy is now controlling
Boston Dynamics’ Spot quadruped in industrial use cases [43].
While RL is not a focus of this paper, the subcomponents of
our stack (including our segmentation module) could be used
in one of these hierarchical frameworks.

4

III. PRELIMINARIES

This section overviews the reduced-order Angular-
Momentum Linear Inverted Pendulum (ALIP) model used
in MPFC, and the operational space controller used to track
MPFC’s outputs. We start by reviewing the ALIP dynamics,
then we derive the reset map and step-to-step dynamics for
a hybrid ALIP model with a finite double stance period. We
then provide a linearization of solutions to the ALIP model
with respect to time be used for stance timing adaptation.
Finally we overview our inverse-dynamics operational space
controller for output tracking based on MPFC solutions.

A. ALIP model

The ALIP model (Fig. 3) is an approximation of the
horizontal center-of-mass dynamics of the robot during single
stance. The ALIP model is similar to Kajita’s Linear Inverted
Pendulum model [25], but uses angular momentum about the
contact point in place of center-of-mass velocity to describe
the speed of the robot. Angular momentum about the contact
point has the advantage of being relative-degree three to (non-
stance ankle) motor torques, compared to relative-degree one
for center-of-mass velocity [28], making the predictions of the
ALIP model relatively accurate even for robots with heavy
legs. We direct the reader to [12] for a derivation of the
ALIP dynamics assuming piece-wise planar terrain with a
passive ankle. The state of the ALIP model consists of the
horizontal position of the center of mass realative to the stance
foot, (xcom, ycom) and the tilting components of the angular
momentum of the robot about the contact point (Lx, Ly).

To take full advantage of Cassie’s blade foot, we include
ankle torque in the sagittal plane, u as an input to the
continuous time ALIP model. The dynamics of the ALIP with
ankle torque are given by

ẋcom

ẏcom
L̇x

L̇y


︸ ︷︷ ︸

ẋ

=


0 0 0 1

mH
0 0 −1

mH 0
0 −mg 0 0
mg 0 0 0


︸ ︷︷ ︸

A


xcom

ycom
Lx

Ly


︸ ︷︷ ︸

x

+


0
0
0
1


︸︷︷︸
B

u (1)

where m is the robot’s mass, and H is the height of the CoM
above the terrain, and all quantities are in the stance frame.

B. Hybrid ALIP Model Based on Foot Placement

To enable control of the ALIP through foot placement, we
derive a reset map relating the positions of the robot’s feet at
touchdown to a discrete jump in the ALIP state. Many walking
controllers feature a double stance phase during which weight
transfers from one leg to the other. A double stance phase
is particularly useful for Cassie, to avoid oscillations caused
by rapidly unloading Cassie’s leaf springs. To treat the single
and double stance phases as a single step in the step-to-step
dynamics [26], we derive a reset map from x−, the ALIP
state just before footfall, to x+, the ALIP state just after liftoff,
including a double stance phase of fixed duration, Tds. We start
by integrating the double stance dynamics, and then we apply
a coordinate change to express the ALIP state with respect to
the new stance foot.

Fig. 3: The ALIP model assumes that the robot’s CoM is
restricted to a virtual plane above the terrain. The states of
the ALIP model are the horizontal CoM positions, and the
angular momentum of the robot about the horizontal axes.

During double stance, we leave the ankles passive and
treat the center of pressure (CoP) between the two feet as
a control input. We then integrate the resulting dynamics with
an assumed input trajectory,

pCoP (t) = p− + f(t)(p+ − p−) (2)

where p−, p+ ∈ R3 are the pre- and post-touchdown stance
foot positions, t is the time since the beginning of double
stance, and f(t) : R 7→ [0, 1] determines the rate at which
weight is transferred to the new stance foot. The CoP enters the
ALIP dynamics via the angular momentum transfer formula

LCoP = Lp− + (pCoP − p−)×mvCoM .

To formulate the double-stance dynamics as a linear system,
we introduce an assumption to remove the cross-product term:

Assumption. [(pCoP − p−)×mvCoM]x,y ≈ 0.

Justification. The most straightforward justification is that the
robot is generally stepping in the direction it is walking, so
vCoM is approximately parallel to p+ − p−. We can also
consider that under the ALIP model, pCoP−p− and vCoM both
lie in the ground plane, so (pCoP−p−)×vCoM must be normal
to this plane. For flat ground, this vector is perpendicular to
the world x − y axes, and the x and y components remain
small for non trivial slopes (e.g. sin(15◦) ≈ 0.25).

Under this assumption, the tilting angular momenta about
p− and pCoP are equal. This allows us to treat the CoP as a
virtual contact point, yielding

L̇x = −mg(ycom − pCoP,y(t))

L̇y = mg(xcom − pCoP,x(t)). (3)

Substituting (2) into (3), we arrive at the continuous dynamics

5

describing the ALIP during double stance:

ẋ = Ax+

02×1 02×1 02×1

0 mg 0
−mg 0 0


︸ ︷︷ ︸

BCoP

f(t)(p+ − p−) (4)

The solution to (4) with the initial condition x(0) = x− is
linear in x−, p− and p+ [44]:

x(Tds) = Arx− +Bds (p+ − p−) . (5)

where Ar = exp(ATds) and

Bds =

(∫ Tds

0

f(t)eA(Tds−t)dt

)
BCoP . (6)

For f(t) = t
Tds

, i.e. linearly shifting the robot’s weight
between feet over double stance2, (6) evaluates to

Bds = ArA
−1

(
1

Tds
A−1

(
I −A−1

r

)
−A−1

r

)
BCoP . (7)

The remainder of the reset map is a coordinate change to
express the CoM position as relative to the new stance foot,

x+ = x(Tds) +

[
−I2×2 02×1

02×2 02×1

]
︸ ︷︷ ︸

Bfp

(p+ − p−) . (8)

with the fp subscript denoting “foot placement".
By sequentially applying (5) then (8), we arrive at a reset

map from x− to x+ which is linear in x−, x+, p− and p+,

x+ =
[
Ar (−Bds −Bfp) (Bds +Bfp)︸ ︷︷ ︸

Br

] x−
p−
p+

 . (9)

C. Step-to-Step ALIP Dynamics

We will also consider step-to-step (s2s) ALIP dynamics.
We view the ALIP without ankle actuation as a discrete-time
linear time-invariant system by sampling the ALIP state at the
end of each (fixed duration of Tss) single stance phase. These
dynamics are simply

xn+1 = As2sxn +Bs2s(pn+1 − pn) (10)

where As2s = exp(A(Tss+Tds)) and Bs2s = exp (ATss)Br.

D. Step Timing Adaptation

We will use the fact that the initial ALIP state is constant
to adapt the duration of the initial swing phase as part of the
MPFC problem formulation. This has previously been applied
to controllers based on the divergent component of motion
[4, 45, 46] and instantaneous capture point [27], as these
models admit an exact coordinate transform for the initial
stance duration to make the touchdown state linear in the
transformed variable. The ALIP state space does not admit

2Because Bds is decoupled in x and y, our hardware MPFC implementation
assumes f(t) = 1 for the lateral compenents of the ALIP state, which
corresponds to instantaneous weight transfer at the beginning of double-stance.
We detail how this helps Cassie track the desired step width in Appendix A.

this coordinate change, so we instead linearize the solution to
(1). Given T seconds remaining in single stance, and a current
ALIP state xc, the exact solution to (1) with constant ankle
torque, u, is

x(T) = Ad(T)xc +Bd(T)u (11)

Where Ad(T) = exp(AT) and Bd(T) = A−1(Ad(T)− I)B.
We linearize (11) with respect to T and u about a nominal
remaining stance time of T ∗ and ankle torque of 0 to find the
ALIP state at the end of the current stance period (and the
initial state of the s2s ALIP model), x0:

x0 = Ad(T
∗)xc +

∂Ad

∂T

∣∣∣∣
T∗

(T − T ∗)xc +Bd(T
∗)u. (12)

E. Operational Space Control

We use operational-space control (OSC) to track outputs
such as swing foot position and pelvis orientation, while
respecting frictional contact constraints [47]. OSC considers
a full-order Lagrangian model of the robot’s dynamics:

M(q)v̇ + C(q, v) = g(q) +Bu+ JT
λ λ (13)

Where q and v are generalized positions and velocities, u
are inputs, and λ are forces arising from contacts or other
holonomic constraints. Given a set outputs to track, {yi}, we
define task-space PD controllers,

ÿi,cmd = ÿi,des +Kp(yi,des − yi) +Kd(ẏi,des − ẏi).

The goal of OSC is to find dynamically feasible inputs,
generalized accelerations, contact forces, and constraint forces,
such that the task-space accelerations, ÿi = Jiv̇ + J̇iv, match
the PD controller as closely as possible, while satisfying
contact constraints and holonomic constraints. We formulate
this as a quadratic program with Lorentz cone constraints on
the contact forces:

minimize
v̇,u,λh,λc,ε

N∑
i

˜̈yTi Wi
˜̈yi + ∥u∥2W + ∥v̇∥2W + ∥ε∥2W (14a)

subject to Mv̇ + C = g +Bu+ JT
h λh + JT

c λc (14b)

Jhv̇ = −J̇hv (14c)

Jcv̇ + ε = −J̇cv (14d)
λc ∈ F (14e)
umin ≤ u ≤ umax (14f)

where λc and Jc are the stacked contact forces and contact
Jacobians, and F is the product of the friction cones for
each contact point. The contact constraint is treated as a soft
constraint by the introduction of a slack variable ε to ensure
the problem is always feasible. The holonomic constraint
Jhv̇ = −J̇hv represents Cassie’s four-bar linkages and fixed
joint constraints to model Cassie’s leaf spring springs. The task
space acceleration errors are ˜̈yi = ÿcmd − (Jy,iv̇ + J̇y,iv).

6

IV. MIXED INTEGER FOOTSTEP CONTROL

This section details the formulation of our model predictive
footstep controller as an MIQP (Fig. 2B). Compared to [9],
our problem statement is more expressive while using fewer
decision variables. For the current stance phase, MPFC opti-
mizes the stance duration and ankle torque. In the subsequent
stance phases, MPFC only affects the s2s ALIP state through
foot placement, whereas [9] included several knot points per
stance phase for the ALIP state and ankle torque. Because
double stance is incorporated into the s2s dynamics, MPFC
merges the double and single stance phase together into
a combined stance phase, which is treated as single-stance
within the optimization. The MPFC stance phase begins at
each touchdown event with a nominal remaining stance time
of Tss + Tds, and the footstep and gait timing solutions are
ignored until the time since touchdown exceeds Tds (Fig. 4).

The continuous MPFC decision variables are the step-to step
ALIP states, xn, the foostep positions, pn, a constant ankle
torque during the initial stance phase, u, and the remaining
duration of the current stance phase, T . We also introduce
one binary variable per discrete foothold per stance phase,
µn,i, where i ∈ 1 . . .M specifies that the binary variable
corresponds to Pi , one of M available convex polygon
footholds. A diagram of the key MPFC decision variables is
show in Fig. 4.

We now introduce the MPFC problem statement (15), and
then elaborate on the costs and constraints. Let xc be the
current ALIP state, with T ∗ seconds nominally remaining in
the current MPFC stance phase. MPFC is formulated as:

minimize
x,p,µ,u,T

Jmpc(x,p) + Jreg(T, u) (15a)

subject to x0 = Adxc +AAdxc(T − T ∗) +Bdu (15b)
xn+1 = As2sxn +Bs2s(pn+1 − pn) (15c)
µn,i = 1 =⇒ pn ∈ Pi (15d)∑
i∈I

µn,i = 1 (15e)

µn,i ∈ {0, 1} (15f)
CoM, Input,Timing, and Footstep limits

A. Cost Design

Previous works use deviation from a reference ALIP trajec-
tory as a state cost [9, 12]. However, this implicitly encodes
the corresponding footstep sequence into the state cost, and
we desire for MPFC to freely pick the appropriate footstep
sequence for a given terrain. Therefore we formulate a state
cost which does not encode any particular footstep pattern.
We penalize the distance of the MPFC solution from the
set of ALIP trajectories which are periodic over 2 steps and
achieve the desired velocity, vdes. This set is an affine subspace
representing all possible xn which satisfy the system (16).

(A2
s2s − I)xn +As2sBs2sδpn +Bs2sδpn+1 = 0 (16a)

δp0 + δp1 = 2Ts2svdes (16b)

Fig. 4: Top: Key MPFC decision variables and constraints for
a horizon of 2 stance phases. xc is the current ALIP state, u is
ankle torque applied during the current stance phase, x0 is the
ALIP state at the end of the current stance phase, and x1 is
the ALIP state at the end of the next stance phase. The current
stance foot position, p0, is unconstrained, and subsequent
footsteps are constrained to lie in either Pj or Pq using integer
variables. Bottom: Relationship between the nominal stance
phases and the MPFC gait timing optimization. The initial
stance duration is adjusted continuously by optimizing over
the remaining stance time, T .

Where δpn = pn+1 − pn, (16a) is the ALIP dynamics
rolled out over two footsteps, with the period-2 orbit constraint
xn+2 = xn, and (16b) requires the net displacement of the
robot to match the desired velocity. We show how to eliminate
δpn and δpn+1 in Appendix B, to express solutions of (16) as

Πn(xn − dn(vdes)) = 0. (17)

Where Πn ∈ R4×4 is a projection matrix used to eliminate
δpn from (16), and dn(vdes) is an offset that encodes the
desired velocity. Our MPC cost is then formulated as

Jmpc(x,p) =
N−1∑
n=1

[
(xn − dn)

TΠT
nQΠn(xn − dn) +

(δpn − δp∗n)
TR(δpn − δp∗n)

]
+

(xN − dN)TΠT
NQNΠN (xN − dN)

where Q,R, and QN are positive-definite weight matrices.
We regularize the relative footstep positions to a nominal step
size, defined by the desired velocity and the step width, l, as

δp∗n =

 vdes,x(Tss + Tds)
vdes,y(Tss + Tds) + σnl

0

 (18)

where σn = −1 for left-stance and +1 for right stance. We
add quadratic costs on T and u, weighted by positive scalars

7

wT and wu:

Jreg = wT ∥T − T ∗∥2 + wu∥u∥2. (19)

B. Dynamics Constraints

The initial state constraint (15b) evaluates (12) to relate the
current ALIP state to the initial s2s ALIP state via ankle torque
and stance duration. The dynamics constraints (15c) are the
s2s ALIP dynamics (10).

C. Foothold Constraints

Each convex polygonal foothold is defined by a plane
fT
i p = bi and a set of linear constraints Fip ≤ ci. The logical

constraint (15d) is enforced with the big-M formulation

Fipn ≤ ci +M(1− µn,i) (20a)

fT
i pn ≤ bi +M(1− µn,i) (20b)

−fT
i pn ≤ −bi +M(1− µn,i). (20c)

With appropriately normalized Fi and fi, (20) corresponds
to relaxing each foothold constraint by M meters when µi =
0. Since our problem scale is on the order of 2 m, we choose
M = 10 for simplicity3. The binary constraint (15f) and the
summation constraint (15e) imply that exactly one foothold
must be chosen per stance phase.

D. CoM, Timing, Input, and Footstep Limits

We add the following constraints to reflect the physical
limitations of the robot:

• We add a soft-constraint on the CoM position of ±35
cm. in each direction.

• We update bounds on T at each solve so the total single-
stance duration lies in the range [0.27, 0.33] seconds.

• We add a crossover constraint to prevent the feet from
crossing the x− z plane.

• We limit the ankle torque to 22 Nm to keep the center
of pressure within the blade foot.

• With Tmin = 0.27 seconds left in the nominal single
stance time, we add a trust region constraint on p1. This
constraint is a bounding box centered at the previous p1
solution with a radius of T ∗ m. As implied by the unit
conversion of T ∗ to a distance, the radius of this bounding
box shrinks at a rate of 1 m/s.

V. OUTPUT SYNTHESIS FOR OPERATIONAL SPACE
CONTROL

To realize the planned walking motion on the physical robot,
MPFC outputs are tracked with OSC (Fig. 2C). This section
describes the construction of the outputs tracked by the OSC.

3M must be large enough for every relaxed foothold to contain every
unrelaxed foothold, but should otherwise be small for numerical stability

Fig. 5: To enforce the planarity assumption of the ALIP, we
use OSC to drive Cassie’s CoM to a virtual plane defined by
current and upcoming stance foot positions.

A. Center of Mass Reference

Given a footstep plan, we construct a CoM trajectory which
enforces the local planarity assumption of the ALIP model
by constructing the least-inclined plane passing through the
current and imminent stance foot positions (Fig. 5). Letting
p = pn+1 − pn, the plane parameters are the solution to[

px py
−py px

] [
kx
ky

]
=

[
pz
0

]
. (21)

After solving for kx and ky , we define the reference
trajectory for the CoM height in the stance frame as

zc(t) = H + kxxc(t) + kyyc(t). (22)

To account for discontinuities in kx, ky, xc, and yc when
the stance foot changes, we add a first-order low pass filter
on kx and ky with a 100Hz cutoff frequency, and we clip the
desired zc to within 2.5 cm of the measured CoM height.

B. Swing Foot Reference

We continuously adapt the swing foot trajectory psw(t) to
the updated swing-phase duration and planned next footstep
position with a planning QP similar to [46]. First we generate
a waypoint above the line connecting the initial and final foot
location, following an adaptive clearance scheme, then we find
a single-segment polynomial trajectory through this waypoint.

1) Adaptive Swing Foot Clearance: Our clearance scheme
(Fig. 6) updates the midpoint of the swing-foot trajectory by
adapting its direction and clearance to the total displacement of
the swing foot. This gives sufficient clearance when stepping
up over steps without unnecessarily high steps on flat ground.

Let the swing foot position at the beginning of the swing
phase be psw,0, the target foot position for the end of swing be
psw,des, and define ∆p = psw,des−psw,0. We construct a unit
vector n̂p which is perpendicular to ∆p and lies in the plane
spanned by ∆p and the world z axis. When ∆p is small, for
example when the robot is stepping in place, small variations
in height estimates can lead to n̂p pointing in inconsistent

8

directions, therefore we blend n̂p with the unit z-vector, êz to
get a blended direction, n̂b:

n̂b = (1− s)êz + sn̂p

where

s = clamp
(
∥∆p∥ − 0.1

0.1
, 0, 1

)
.

The final waypoint location is then defined as

pmid = psw,0 +
1

2
∆p+ cclear

n̂b

∥n̂b∥

where cclear = c + min(c,∆pz) is the final swing foot
clearance, and c is a tuneable parameter representing the swing
foot clearance on flat ground, which we set to 15 cm in our
experiments.

Fig. 6: Trajectory from the swing foot position at the beginning
of the swing phase, psw,0 to the next footstep solution from
MPFC, psw,des. We adapt the direction and clearance of the
trajectory’s midpoint, pmid, based on the relative positions of
psw,0 and psw,des to ensure sufficient ground clearance.

2) Swing foot Planning QP: After finding the desired mid-
spline waypoint pmid, we solve (23) to update the swing
foot trajectory to the new footstep target psw,des and swing
phase duration T . In addition to passing through the desired
midpoint and ending at the target location, we constrain the
swing foot trajectory to be continuous up to acceleration with
the previously planned swing foot trajectory:

minimize
∫ T

0

p̈sw(t)
2dt

subject to psw,k(tk−1) = psw,k−1(tk−1) psw(T) = psw,des

ṗsw,k(tk−1) = ṗsw,k−1(tk−1) ṗsw(T) = 0

p̈sw,k(tk−1) = p̈sw,k−1(tk−1) p̈sw(T) = 0

psw(T/2) = pmid (23)

where k indexes each OSC control cycle. We transcribe
(23) as a QP which optimizes over the coefficients of a
polynomial representing the swing foot trajectory. By using
the initial swing foot position as psw,0 at the beginning of the
swing phase, we ensure that the trajectory starts at the initial
swing foot position without needing to explicitly enforce that
constraint for every control cycle.

C. Constant References

We track a constant pelvis roll and pitch of zero, and a
constant swing-leg hip yaw (abduction) angle of zero. We track
a commanded pelvis yaw rate from the remote control, and
a swing toe angle so that Cassie’s foot makes an angle of
arctan kx with the ground.

D. Ankle Torque

We add a quadratic on the difference between MPFC and
OSC ankle torque commands.

VI. STABLE STEPPABILITY SEGMENTATION AND CONVEX
DECOMPOSITION

Our control framework for walking over convex polygons
requires an effective pipeline for approximating the safe terrain
as convex polygons online (Fig. 2A). This section introduces
our solution, “Stable Steppability Segmentation” (S3) and a
complementary convex decomposition procedure similar to
that used in [9] (Fig. 7).

S3 uses local information to classify the safety of each pixel
in an elevation map, yielding a binary steppability mask of
the terrain. We then perform contour extraction on this mask,
and a 2D convex decomposition on the resulting steppable
regions. Finally, we fit plane parameters to the resulting convex
polygons using the elevation map.

In contrast to plane segmentation, we do not subdivide or
reject any steppable region based on its estimated normal
or its error with respect to a best fit plane. This approach
prevents localized frame-to-frame variations from having an
outsized effect on the final segmentation, because there are no
subdivision boundaries which might vary between frames, and
localized outliers cannot trigger a subdivision or rejection of
an entire region. Because safety criteria are local, we further
enhance temporal consistency by simply adding hysteresis to
the classification of each pixel. We also use additional metrics
beyond gradient or roughness to determine steppability, as
discussed in Section VI-A. The simplicity of our approach
allows the entire pipeline from elevation mapping to publish-
ing convex polygons to run in real time on a single CPU
thread. The remainder of this section explains S3 and our
accompanying convex decomposition procedure in detail.

A. Stable Steppability Segmentation

The goal of steppability segmentation is to determine where
on the elevation map is safe to step. Because the segmentation
determines the foothold constraints for MPFC, it is important
that the segmentation algorithm is

• Temporally consistent
• Computed in real time
• Appropriately conservative.
To accomplish this, we compute various “safety criteria” for

whether a pixel is considered safe (Fig. 8). A safety criteria
is a function transforming the elevation map to a pixel-wise
“safety score” in the range [0, 1], where 1 is completely safe,
and 0 is unsafe. These safety criteria are fused via their
geometric mean to yield an overall safety score. Temporal

9

Fig. 7: Pipeline for converting an elevation map of the terrain into a set of convex polygons for planning safe footsteps. Stable
Steppability Segmentation produces a temporally-consistent steppability mask representing a 2D overhead view of the safe
terrain. We then extract the 2D boundaries of the safe terrain as non-convex polygons, which we decompose into convex
polygons using an algorithm based on approximate convex decomposition. Finally, we fit plane parameters to the convex
polygons using the height of their vertices on the elevation map.

Fig. 8: Block diagram of S3, our proposed terrain segmentation
approach. Safety criteria are combined into an overall safety
score for each elevation map pixel, before applying hysteresis
to enhance temporal consistency.

consistency is achieved through the local structure of the
S3 algorithm, as outlined above, and enhanced by adding
hysteresis to the overall safety score based on the previous
segmentation. Realtime computation is achieved through the
simplicity of our algorithm, and the small size of our elevation
map. Because safety criteria are local to each pixel, S3
could also be GPU-parallelized for large elevation maps. The
next subsection outlines what we mean by “appropriately
conservative” and introduces a curvature-based safety criterion
which accomplishes this goal.

1) Curvature Safety Criterion: During our experiments in
[9], we used a plane segmentation approach [32], and had
difficulty picking a safety margin which avoided tripping over
curbs (Fig. 9) while not taking excessively large steps over
curbs. This experience illustrated the need to step further away
from the bottom of a ledge than the top. To penalize terrain
which is below edges, we need to identify terrain that is lower
than its surroundings. Treating the elevation map as an image,
this looks like applying a kernel that compares the height of

Fig. 9: Walking over ledges with Cassie requires asymmetric
constraints on the footstep position, p, which is mapped to
the center of Cassie’s foot. The desire to specifically avoid
stepping below an edge motivated our curvature based safety
criterion, which differentiates between sides of an edge using
the sign of the elevation map’s Laplacian.

each pixel to the average of the pixels around it:

1

8

1 1 1
1 −8 1
1 1 1

 . (24)

This particular kernel is a Laplacian kernel, used to compute
the curvature of an image, meaning we can use standard image
processing tools to efficiently calculate this safety criterion.
Letting E be the elevation map, the curvature criterion is
computed via Eq. (25),

ccurve = min(1, exp(−αcLoG(E))) (25)

where LoG is the Laplacian of Gaussian filter, which convolves
the elevation map first with a Gaussian filter, then takes
the Laplacian. The pixel-wise exponential exp(−αcLoG(E))
maps regions of positive curvature to the interval (0, 1],
with the score exponentially approaching 0 as the curvature
increases. The scale factor αc tunes how aggressively positive
curvature is punished. We take the min of the criterion with 1
to ensure that no bonus points are awarded for negative cur-
vature. Penalizing only positive curvature specifically targets

10

area below edges, which poses a tripping hazard. To segment
out the edge itself, we introduce an inclination safety criterion,
which operates on the estimated normal of the elevation map
to penalize steep terrain.

2) Inclination Safety Criterion: The inclination safety cri-
terion treats steep terrain as unsafe, by considering the magni-
tude of the z component of the surface normal at each elevation
mapping pixel. We estimate the normal using the covariance
matrix of the positions around each pixel [17], then square the
z component to yield the inclination safety criterion,

cinc = nz(E)2. (26)

To give context for how cinc classifies terrain in practice,
we pick 0.7 as the final safety threshold for S3. For a pixel
which is otherwise considered safe, this means a slope greater
than about 33◦ is unsafe, since cos2(33◦) = 0.7.

3) Combining Safety Criteria: The final safety score is the
geometric mean of the score for each criteria, plus a hysteresis
value for all pixels classified safe in the previous frame. Pixels
with a final score above some threshold are considered safe.
The resulting binary image is post-processed to give a 2D view
of the safe terrain around the robot. Letting k index the time
series of segmentations, the S3 output is given by

Sk = clean

(M∏
i=1

ci(Ek)

)1/M

+ khystSk−1

 > ksafe


where M is the total number of safety criteria, and clean(S) =
open(close(erode(S))). The erode operation adds a safety
margin to account for swing-foot tracking error and the length
of Cassie’s foot. The open and close operations remove any
thin holes or protrusions.

B. Convex Planar Decomposition

Finally, we convert the binary steppability mask into a set
of convex planar polygons. We identify connected components
of steppable terrain from the mask, and extract their outlines
as 2D polygons. In general, these are non-convex polygons
with holes (caused, for example, by small obstacles or other
unsteppable areas), but we require convex foothold constraints
for the MPFC. We use a two stage process to find a set
of convex polygons whose union is an inner approximation
these non-convex polygons. This avoids creating many small
triangles like an exact convex decomposition would, leading
to fewer mixed integer constraints in the MPFC.

First, we perform approximate convex decomposition
(ACD)[18] on each polygon. ACD returns a decomposition of
the original region into polygons which are d-approximately
convex, where d the depth of the largest concave feature.

After filtering out polygons with area less than 0.05 m2,
we find a convex inner-approximation of these nearly convex
polygons with a greedy approach we name the whittling
algorithm (Algorithm 1), after the way it makes incremental
cuts to the polygon. We initialize the output polygon, P as
the convex hull of the original polygon, then take P to be the
intersection of itself with greedily chosen half-spaces until no
vertices of the original polygon are contained in the interior

P . To reduce the number of cuts we make, we initially sort
the vertices by their distance to the boundary of P , handling
the innermost vertices first.

Algorithm 1 Whittling Algorithm

Require: Input polygon vertices V = {v0 . . . vn}
procedure WHITTLE(V)
P ← ConvexHull(V)
Sort vi by distance to ∂P
for all vi do

if vi ∈ Interior(P) then
H = MakeCut(vi, V)
P ← P ∩H

return P

MakeCut(V, vi) is a nonlinear program inspired by maxi-
mum margin classification [48] which finds a such that the
half-space H = {x | aT (x− vi) ≤ 0} contains as much of V
as possible:

a = argmin
a

∑
j ̸=i

max(aT (vi − vj), 0)
2

subject to ∥a∥22 = 1 (27)

We solve (27) using a custom gradient-based solver, which we
detail in Appendix C. Using the normal of the closest face of
P to vi provides a high-quality initial guess for the solver.

To fit these polygons to the terrain, we project the 2D
vertices onto the elevation map to recover the 3D position of
each vertex. We then use least-squares to find the best fit plane
to these vertices, yielding our final polygon representation.

VII. EXPERIMENTAL SETUP

This section explains the practical implementation of MPFC
and our perception stack. The parameters used for S3, MPFC,
and their supporting algorithms are given in Appendix D. The
full perception and control system consists of six processes
across three separate computers. Cassie’s target PC runs a
Simulink Real-Time application which publishes joint posi-
tions and velocities and IMU data, at 2kHz, and subscribes
to torque commands. Communication between the target PC
and Cassie’s onboard Intel NUC occurs over UDP. The NUC
runs the state estimator and a torque publisher to communicate
with the target PC, and the OSC process, which includes the
CoM and swing foot planner.

The perception stack and MPFC are run on an off-board
ThinkPad p15 Laptop with an 8-core, 2.3 GHz Intel 1180H
processor and 24 GB of RAM. The perception stack performs
elevation mapping, terrain segmentation, and convex decompo-
sition in one thread, and has a second thread to poll the Intel
RealSense. The state estimator, operational space controller,
torque publisher, perception stack, and MPFC communicate
over LCM [49] for low latency.

Except for the low-level target PC, all processes use the
Drake systems framework [50] to drive their operation. We
solve the MPFC problem using Gurobi, and the OSC QP using
FCCQP [51]. We use the contact-aided invariant extended
Kalman filter developed by Hartley et al. [52] to estimate the

11

pose and velocity of the floating base. Open source code for all
of our contributed components will be provided in dairlib4.

A. RealSense D455 Depth Camera

The RealSense is mounted to Cassie’s pelvis, pointed
downward toward the terrain in front of the robot. We use
librealsense2 to subscribe to RealSense frames via a
dedicated polling thread, with the perception stack thread
accessing these frames through a shared buffer. We apply a
decimation filter to reduce point cloud density.

B. Robot-Centric Elevation Mapping

We use the framework of Fankhauser et al. [31] to construct
a robot-centric elevation map of the terrain. This framework
represents the terrain as a regular grid, with the height of
each cell updated by point cloud measurements through a
Kalman filter. Because Cassie’s legs are visible in the camera
frame, we crop out any points inside bounding boxes around
Cassie’s leg links. State estimate z-drift is a well-known source
of elevation mapping artifacts which must be corrected for
an accurate terrain estimate. Related works use perception
information to correct drift [32], however this correction is
not always sufficient when the walking motion generates non-
negligible impacts [17], as is the case for most Cassie walking
controllers. To strongly correct for state estimate z-drift, before
each point cloud update, we adjust the height of the elevation
map by adding the height difference between the elevation
map and the current stance foot. To account for outliers, we
calculate the elevation map height as the median of a 4x4 pixel
grid, centered at the contact point.

VIII. RESULTS

The perception and control architecture presented in this
paper enables Cassie to walk over previously unseen terrain
by identifying safe terrain and planning stabilizing footsteps
subject to non-convex terrain constraints in real time. This
section presents experiments to show these capabilities and
support our key claims. We perform simulation experiments
to validate control design decisions, and quantify the perfor-
mance gap between walking over known vs. online-identified
safe terrain. On hardware, we showcase underactuated walking
over discontinuous terrain with the Cassie biped, reporting
consistent sub-10-millisecond solve times for MPFC. We
use data from real-world tests on multiple surface types to
show the improved temporal consistency and faster run time
of S3 compared to explicit plane segmentation. Finally we
summarize the capabilities of MPFC and S3 as a complete
system, highlighting the performance improvements as a result
of the contributions in this paper.

A. Simulation Experiments

This subsection details simulation experiments on complex
terrains. Our Drake simulation includes Cassie’s leaf springs,
reflected inertia, motor curves, joint limits, effort limits, and

4https://github.com/DAIRLab/dairlib

full collision geometry. MPFC is commanded a velocity of
[vx, vy] = [0.375, 0] m/s, and OSC is commanded a yaw
rate proportional to the heading error. We show the idealized
capabilities of MPFC via a simulation with ground-truth state
and terrain information. Compared to [9], where the most
challenging terrain shown was 50 cm deep stairs, we show
Cassie walking over an 8m × 23 cm beam, and up stairs
with a depth of 27 cm and a rise of 15 cm. We then show a
perceptive simulation, which simulates the invariant EKF [52]
to provide state estimates to OSC, MPFC, and the elevation
mapping system, and uses a simulated depth sensor as input
to the perception pipeline. The S3 steppable area is more
conservative than ground truth, resulting in a traversable beam
width of 35 cm and stair depth of 40 cm with perception.

1) Step-Timing Optimization: We demonstrate the impor-
tance of step-timing optimization by measuring the success
rate of walking across randomly generated stepping stones
with and without step-timing optimization. We generate a 5×3
grid of stepping stones, where each stone has a random height,
length, width, and position offset. The minimum length and
width are controlled by the parameter dmin, and the centers are
offset from a nominal spacing of dmin + 21cm. The stepping
stone dimensions are uniformly distrubuted with the bounds
given in Table I. An example stepping-stone terrain can be
seen in Fig. 10. We sweep dmin from 35 cm to 70 cm and
compute the success rate for traversing 50 random terrains at
each size, which we report in Fig. 12.

Fig. 10: Example of successfully traversing a random stepping
stone environment in simulation with dmin = 35 cm.

Step-timing optimization increases the success rate of walk-
ing over stepping stones, with larger effects for terrains with
smaller footholds. Intuitively, underactuated dynamics strongly
couple step-timing, stride length, and walking speed. Given
Cassie’s underactuation, step-timing therefore compensates for
variability in the foothold location.

TABLE I: Stepping Stone Parameter Distributions

Parameter Uniform Distribution Bounds
x offset ± 5 cm
y offset ± 5 cm
z offset ± 7.5 cm
length [dmin, dmin + 5] cm
width [dmin, dmin + 5] cm

https://github.com/DAIRLab/dairlib
https://github.com/DAIRLab/dairlib

12

Fig. 11: MPFC simulation experiments. Top: we use ground truth terrain information to walk over a 23 cm wide beam, and
stairs with a rise of 15 cm and a depth of 27 cm. Bottom: Displaying the elevation map for walking over the same terrain
types using S3. Safety margin in S3 results in less steppable area than for ground truth, so the minimum traversable dimensions
are increased to 35 cm wide for the beam and 40 cm deep for the stairs.

Fig. 12: Success rates for walking across randomly-generated
stepping stones in simulation. Results with step-timing opti-
mization are labeled Opt-T, and results without step timing op-
timization are labeled Fixed-T. We report results with ground
truth state and terrain (GT), as well as with perceptive terrain
using S3 (Perceptive). Step-timing optimization increases suc-
cess rates over small footholds. The lower success rate using
perception is primarily due to isotropic safety margin in S3
reducing the lateral steppable area compared to ground-truth,
which accounts for the width and length of the foot separately.

B. Walking on Discontinuous Terrains

We show hardware experiments where Cassie walks over
discontinuous and unstructured terrains using our perception
and control stack. A single trial traversing steps, a curb, and
a grass hill is shown in Fig. 13. Additional trials are shown
in the supplemental video.

C. Controller Solve Times

To support our claims of faster than 100 Hz MPFC solve
times, we compile solve times across 11:17 minutes of walking
data from three experiments on the brick steps shown in
Fig. 13a. We give summary statistics of MPFC solve times in

Table II. This data uses a planning horizon of N = 2 footsteps,
plus the initial single stance phase. The maximum solve time
observed was 12.6 ms, with 99.9% of solves taking less than
7.7 ms. The median solve time was 2 ms, compared to the
median solve time of of 5 ms and worst case solve time of
over 20 ms reported in [9] using the same computer.

TABLE II: MPFC Solve-Time Statistics (134,654 Solves)

Mean Median 99.9th Percentile Maximum
0.0022 0.0020 0.0077 0.0126

D. Perception Stack Evaluation

This section supports our claims of S3’s improved temporal
consistency and faster run time compared to explicit plane
segmentation. We use elevation mapping data from three
terrains to evaluate segmentation performance (Fig. 14). The
Lab terrain establishes a baseline for each method in an ideal
environment, where state estimate z-drift is the only potential
challenge. The Brick Steps terrain features a set of brick steps
where the bricks have settled over time, making the steps
uneven, and unlikely to be segmented into a single plane by
plane-segmentation methods. Similarly, the Grass terrain is
challenging for plane segmentation approaches because our
stance foot drift-correction conflicts with the height of the
point cloud, introducing artifacts into the elevation map.

We use the plane segmentation module developed by Miki
at al. in the elevation_mapping_cupy software package
[32] with default parameters (hereafter labeled EM_cupy) as
a plane segmentation baseline. This algorithm has a similar
structure to S3, starting by filtering the elevation map, classi-
fying each cell as steppable or not, and then (unlike S3), trying
to segment the steppable cells into planes. Each connected
component of steppable terrain is checked for planarity, and
if it fails, RANSAC [53] is used to find smaller planes within

13

(a) Motion tiles showing Cassie ascending and descending steps, stepping over a curb onto the grass, and walking up a grassy slope in one
continuous walking trial.

(b) Plot of the velocity tracking performance
of the robot using our control stack.

(c) MPFC Solve times during the above trial. (d) Plot of the elevation change over the trial,
estimated from the onboard state estimator.

Fig. 13: Cassie Walks on unstructured terrain using our proposed perception and control stack, climbing and descending a set
of steps, stepping over a curb, and walking up a grassy hill. Our perception stack identifies safe terrain and decomposes it into
convex polygons online while the robot is walking at over 0.5 m/s. Footage can be viewed in the supplemental video.

14

TABLE III: Comparison of S3 and Plane Segmentation Baselines As Benchmarked

S3 (Ours) EM_cupy EM_cupy_NR
Steppability Criteria Curvature, Inclination Roughness, Inclination Roughness, Inclination
Incorporates History Yes No No
Plane Refinement None RANSAC [53] Reject regions with slope ≥ 30◦

Inpainting Method Navier-Stokes [54] Least Neighboring Value Least Neighboring Value

Fig. 14: The environments used to collect data for benchmark-
ing the perception stack’s performance. From top to bottom
the terrains are Lab, Brick Steps, and Grass

that connected component. The authors of [32] also provide the
option to disable RANSAC plane refinement, instead accepting
or rejecting each connected component of steppable terrain
in its entirety based on the estimated surface normal. We
also test this variant, henceforth labeled EM_cupy_NR, where
NR denotes “No RANSAC” or “No Refinement.” Because
EM_cupy_NR is identical to the default EM_cupy algorithm
except for lacking a global planarity requirement on steppable
regions, these results will support our argument that explicit
plane segmentation is particularly brittle. Table III summarizes
the differences between S3 and the baselines.

1) Computation Time: We support the claim that our per-
ception stack is real-time with detailed profiling. To show that
the entire pipeline is real-time, we profile the pipeline on 90
seconds of walking data from Brick Steps. We report the
worst-case observed computation time for each step of the
perception stack in Fig. 15, breaking the convex decomposition
steps out by the number of resulting polygons. We note that
the worst-case cumulative compute times stay below the 33 ms
required for keeping up with the RealSense frame rate.

As a benchmark against other segmentation approaches, we
compare the run times of S3, EM_cupy, and EM_cupy_NR
for each test environment in Fig. 16, and find S3 to be the

Fig. 15: Detailed profiling of our perception stack, showing the
worst-case runtime of each component. “Convex Decomposi-
tion” includes all steps necessary to convert the steppability
mask from S3 into 2D convex polygons. S3 and Plane Fitting
use unoptimized python implementations, providing an avenue
for further run time improvements. Profiling is performed on
the ThinkPad p15 laptop used for hardware experiments.

most consistent, with the lowest computation time.
2) S3 Temporal Consistency: We measure the temporal

consistency of each segmentation approach via the intersection
over union (IoU) of consecutive segmentations. IoU measures
the ratio of pixels labeled as safe in both segmentation frames
to the number of pixels labeled safe in either frame. Because
data is lost when the elevation map moves relative to the world,
we restrict the IoU computation to pixels which are present
in both frames. A frame-to-frame IoU of 1 represents perfect
temporal consistency, and 0 represents no overlapping safe
terrain between segmentations.

The distributions of frame-to-frame IoU for one minute of
walking data in each environment are shown in Fig. 16. Our
approach consistently achieves an IoU close to 1 across envi-
ronments, representing excellent temporal consistency, while
EM_cupy has a notably lower IoU even in the lab setting,
where elevation map artifacts from floating base drift result in
som non-planarity in the map.

EM_cupy_NR has similar temporal consistency to S3,
though the lack of hysteresis contributes to small holes which
appear and disappear. The improved temporal consistency of
EM_cupy_NR over the default EM_cupy shows that the plane-
segmentation step in particular is brittle, rather than other
design choices like inpainting or steppability criteria. The
segmentation output from each algorithm at 1 second intervals
is shown in Fig. 17, and animations of the segmentation state
are shown in the supplemental video.

3) Convex Polygon Temporal Consistency: This section
verifies that a temporally consistent terrain segmentation ul-
timately leads to a temporally consistent convex polygon

15

Fig. 16: Offline benchmark of S3 compared to plane segmentation baselines. Top: Histogram of the run time of each
segmentation algorithm over 60 seconds of elevation mapping data from each test environment. Benchmark was run on an
Apple Macbook Pro with an M1 Max CPU, 10 cores, and 64 gb of RAM. S3 has the fastest and most consistent run times.
EM_cupy is the slowest, with a highly variable run time, due to the repeated use of RANSAC to refine the plane segmentation.
Bottom: Histogram of the frame-to-frame IoU of the safe terrain segmentation over the same datasets. Our method reliably
achieves a frame-to-frame IoU close to 1 across environments, representing excellent temporal consistency.

decomposition. Because MPFC is free to pick any foothold
for each solve, we compute the frame-to-frame IoU of the
terrain covered by each convex decomposition, rather than the
consistency of individual polygons. We compute the IoU by
sampling. Each elevation map cell is marked as safe if its 2D
position is covered by a convex polygon. We then compute
the IoU of the safe cells corresponding to each consecutive
convex decomposition. The distribution of IoU for the safe
terrain vs. for the convex decomposition is shown in Fig. 18.

TABLE IV: Moving Obstacles Segmented vs. Hysteresis

khyst 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Standing 3/3 3/3 3/3 3/3 3/3 2/3 0/3
Walking 3/3 3/3 3/3 3/3 3/3 2/3 0/3

4) S3 Hysteresis and Moving Obstacles: For our hardware
experiments, we chose a hysteresis value of 0.6, with a safety
threshold of 0.7. This high level of hysteresis enhanced the
consistency of the segmentation for the terrains we tested
on, however less hysteresis may be desirable in dynamic
environments. To determine the appropriate hysteresis for
different scenarios, we provide two analyses. First, we perform
experiments with moving obstacles, by tossing 15 cm foam
cubes into the scene and counting how many are segmented
out for each hysteresis condition. An obstacle is defined as
segmented out if it creates a hole in the terrain segmentation
before it comes to rest. These results are shown in Table IV and
in the supplemental video. Second, we show the distribution
of frame-to-frame IoU values for varying levels of hysteresis
on the Brick Steps in Fig. 19. The lowest observed IoU was

0.78, even without hysteresis, and a hysteresis factor as low
as 0.3 performed similarly to the chosen value of 0.6. These
results suggest that a hysteresis factor between 0.3 and 0.4
can enhance the stability of the terrain segmentation while
maintaining correctness in dynamic environments.

E. Summary of Capabilities

We briefly summarize the capabilities of our perception
and control architecture, and the performance improvements
from MPFC and S3. Compared to our deadbeat ALIP footstep
planner based on [28], MPFC is more robust, even on hard,
flat surfaces, due to the inclusion of workspace constraints,
ankle torque, and step timing optimization. MPFC and S3
also enable Cassie to walk up and down steps and curbs
up to 16 cm tall when each step is deep enough to have a
valid S3 segmentation. In contrast to our original perception
implementation in [9], using S3 for terrain segmentation
allows the robot to walk continuously with perception in the
loop due to its temporal consistency, despite artifacts from
state-estimate drift and impacts. This is the case even on
grass, where proprioceptive and exteroceptive ground height
estimates conflict. We discuss limitations of our stack in
Section IX-B.

IX. DISCUSSION

This section discusses implementation details, limitations,
and failure modes.

16

Fig. 17: Tiles showing the output of each segmentation method for each evaluation environment at 1 second intervals. In the
Lab and Grass environments, the use of Navier-Stokes based inpainting allows S3 to correctly identify the entire elevation
map as steppable. The S3 segmentation experiences minimal “flickering” of the steppable terrain compared to the baselines.
Animations of these segmentation results can be seen in the supplemental video.

Fig. 18: The final convex decomposition has a similarly shaped
IoU distribution to the safe terrain segmentation, though is less
consistent overall.

A. Implementation Details

First, we discuss design choices introduced to handle edge
cases and increase the robustness of our implementation.

1) Inpainting: Because we only use a single depth camera,
whose field of view does not span the entire diagonal of the
elevation map, we lack elevation data for terrain near the robot
when not walking straight forward, leaving the question of how
S3 should classify these cells. During our hardware testing,
classifying these cells as unsafe caused the robot to fall when
the operator drove the robot toward unmapped regions. We
solve this by inpainting the missing portions of the elevation
map using the Navier-Stokes based method implemented in
OpenCV [54], before inputting the elevation map to S3.
This method matches the value and gradient of the image
at the boundary of the missing terrain. For many real world
terrains, this continuous extrapolation is a safe assumption,
since obstacles extend uni-directionally across the entire map.
In more dangerous environments, and when missing elevation
map values are primarily due to occlusions rather than a lack
of sensor coverage, such as in our simulation stepping stone
experiments, a more conservative inpainting scheme such as
least-neighboring-value [32] is appropriate. The ideal solution

17

Fig. 19: Frame-to-Frame IoU of the S3 terrain segmentation
results with varying levels of hysteresis, evaluated on the Brick
Steps data. The lowest observed IoU was 0.78, even without
hysteresis, in contrast to both of the plane segmentation base-
lines, whose the IoU varied across the entire [0, 1] interval.

Fig. 20: Our proposed system naturally handles terrain with
no obvious planar approximation. Despite constantly varying
height and surface normals, S3 classifies the entirety of this
sinusoidal terrain as safe, resulting in a single steppable region
matching the extents of the map. Because ALIP dynamics are
height-independent, the z-coordinate of each planned footstep
does not affect the rest of the MPC solution. Therefore, we
use the elevation map to determine the footstep height sent to
the low-level OSC.

would include additional depth sensors, however our solution
highlights a general theme: due to Cassie’s underactuation, it is
often safer to resolve ambiguous design decisions by favoring
steppability.

2) ALIP State Estimation: Impacts during touchdown and
compliance in Cassie’s hip-roll joints can cause undesirable
spikes and oscillations in the lateral floating base velocity
estimate, and therefore the angular momentum estimate. We
increase our controller’s robustness to these issues by using
a Kalman filter with ALIP dynamics to smooth our estimate
of the ALIP state during single support. We use (1) for the
dynamics model, with full-state measurement, and assume a
much higher measurement noise for the angular momentum
than for the CoM position.

3) Foostep Height Lookup: Before sending a footstep com-
mand to the OSC, we refine the vertical footstep position by
looking up the height of the planned footstep position on a
smoothed, inpainted copy of the elevation map. Because the
ALIP dynamics do not depend on the vertical footstep position,
we do not need to propogate this adjustment back to MPFC. In
addition to increasing the practical robustness of the system,
this allows Cassie to walk on undulating terrain without any
modifications to the perception or control stack (Fig. 20).

B. Limitations, Failure Modes, and Future Work
This section discusses limitations and failure modes, pro-

viding directions for future research. We organize these into
systems limitations, algorithmic limitations, and fundamental
limitations. These limitations would respectively require engi-
neering effort, further research into the proposed methods, or
structural changes to the approach to resolve.

1) Systems Limitations: We use single threaded CPU im-
plementations of elevation mapping and S3, limiting the map
size and resolution which can be handled in real time. Existing
GPU-based elevation mapping implementations [32] could be
used with a GPU implementation of S3 to handle larger or
more detailed maps. Additionally, the fast swing foot motions
and CoM height changes required to walk on steps pushed
the boundaries of what could be tracked with our OSC,
limiting the step heights traversable on hardware to 16 cm.
More challenging terrains will require considering swing-
foot and vertical CoM dynamics at the MPC level, either by
incorporating more detailed dynamics into MPFC, or by using
whole-body MPC to realize the MPFC footstep plans.

2) Algorithmic Limitations: The planning horizon of 2 foot-
steps can result in overly optimistic footstep choices. Further
research could focus on stronger mixed integer formulations
or improved mixed-integer solvers to enable solving for longer
footstep horizons in real time. Alternatively, additional robust-
ness terms could be incorporated in MPFC to favor conserva-
tive behaviors. Cassie’s small lateral workspace and MPFC’s
fixed stepping pattern make the controller vulnerable to lateral
perturbations, especially those occurring at the beginning of
single-stance. Robustness against these perturbations could
be increased by including crossover steps, and by smaller
minimum stance times. The stance duration should then be
coupled to the swing-foot workspace to maintain reachability
of the planned footsteps.

This paper uses heuristic steppability criteria, which demon-
strate the advantages of S3 compared to plane segmentation,
but do not investigate other potential benefits of S3 as a general
framework. For example, one failure case involved dried leaves
which had accumulated underneath the edge of a step, filling
in the space and resulting in the edge being classified as
steppable. This could be avoided by incorporating a higher
level semantic segmentation as an additional safety criterion.

3) Fundamental Limitations: The failure mode experienced
on hardware which was most insufficiently addressed by
this work was slipping. Most often, the robot would fall
immediately upon slipping, but if it recovered, the slip could
introduce large errors into the elevation map which lead failure
from an incorrect segmentation or error in the estimated
ground height. The likelihood of slips could be reduced by
more conservatively constraining the workspace of the ALIP
model (effectively the friction cone), but this cannot entirely
eliminate the possibility. This vulnerability highlights that
like all model-based approaches, ours is vulnerable to gaps
between modeling assumptions and the real world. S3 prevents
inconsistent segmentation of reasonable elevation maps from
causing failures, but cannot correct maps which inaccurately
reflect the real environment. For situations such as tall grass,
or recovering from slip-induced errors, methods are needed

18

which can adaptively rely on either perception or propriocep-
tion, and recognize and reset invalid maps.

X. CONCLUSION AND FUTURE WORK

We present a complete perception and control stack for
underactuated bipedal walking on rough terrain. We formulate
Model Predictive Footstep Control as a single MIQP which
can be solved at over 100 Hz. to stabilize walking over dis-
continuous terrain without a pre-specified foothold sequence.
Motivated by the brittleness of plane segmentation for safe
terrain classification, we develop Stable Steppability Segmen-
tation, a simple algorithm for temporally consistent safe terrain
segmentation, and a complementary convex polygon decom-
position algorithm for generating foothold constraints online.
We demonstrated our proposed perception and control stack on
the underactuated Cassie biped through outdoor experiments.
Future work will consider more expressive models than the
ALIP, to increase the robustness of the controller and allow
bipeds to walk on shallow footholds and execute large step-
to-step height changes.

ACKNOWLEDGEMENTS

We thank the DAIR Lab for the time they have dedicated
to Cassie experiments.

REFERENCES

[1] “Supplemental Video (short).” [Online]. Available: https:
//youtu.be/qk05xAqjyKQ

[2] “Supplemental Video (full).” [Online]. Available: https://youtu.
be/JK16KJXJxi4

[3] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and
K. Sreenath, “3D dynamic walking on stepping stones with
control barrier functions,” in 2016 IEEE 55th Conference on
Decision and Control (CDC). Las Vegas, NV, USA: IEEE,
Dec. 2016, pp. 827–834.

[4] Z. Xiang, V. Paredes, and A. Hereid, “Adaptive Step Duration
for Precise Foot Placement: Achieving Robust Bipedal Loco-
motion on Terrains with Restricted Footholds,” Mar. 2024.

[5] M. Dai, X. Xiong, and A. Ames, “Bipedal Walking on Con-
strained Footholds: Momentum Regulation via Vertical COM
Control,” in 2022 International Conference on Robotics and
Automation (ICRA), May 2022, pp. 10 435–10 441.

[6] L. Krishna, U. A. Mishra, G. A. Castillo, A. Hereid, and
S. Kolathaya, “Learning Linear Policies for Robust Bipedal Lo-
comotion on Terrains with Varying Slopes,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Sep. 2021, pp. 5159–5164.

[7] X. Xiong and A. Ames, “SLIP Walking Over Rough Terrain
via H-LIP Stepping and Backstepping-Barrier Function Inspired
Quadratic Program,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2122–2129, Apr. 2021.

[8] J. Shim, C. Mastalli, T. Corbères, S. Tonneau, V. Ivan, and
S. Vijayakumar, “Topology-Based MPC for Automatic Foot-
step Placement and Contact Surface Selection,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA).
London, United Kingdom: IEEE, May 2023, pp. 12 226–12 232.

[9] B. Acosta and M. Posa, “Bipedal Walking on Constrained
Footholds with MPC Footstep Control,” in 2023 IEEE-RAS
22nd International Conference on Humanoid Robots (Hu-
manoids), Dec. 2023, pp. 1–8.

[10] Z. Gu, Y. Zhao, Y. Chen, R. Guo, J. K. Leestma, G. S. Saw-
icki, and Y. Zhao, “Robust-Locomotion-by-Logic: Perturbation-
Resilient Bipedal Locomotion via Signal Temporal Logic
Guided Model Predictive Control,” Mar. 2024.

[11] R. Deits and R. Tedrake, “Footstep planning on uneven terrain
with mixed-integer convex optimization,” in 2014 IEEE-RAS
International Conference on Humanoid Robots, Nov. 2014, pp.
279–286.

[12] G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle,
“Terrain-Adaptive, ALIP-Based Bipedal Locomotion Controller
via Model Predictive Control and Virtual Constraints,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct. 2022, pp. 6724–6731.

[13] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi,
A. Radulescu, D. G. Caldwell, J. Cappelletto, J. C. Grieco,
G. Fernández-López, and C. Semini, “Simultaneous Contact,
Gait, and Motion Planning for Robust Multilegged Locomotion
via Mixed-Integer Convex Optimization,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 2531–2538, Jul. 2018.

[14] N. Fey, R. J. Frei, and P. M. Wensing, “3D Hopping in
Discontinuous Terrain Using Impulse Planning with Mixed-
Integer Strategies,” IEEE Robotics and Automation Letters, pp.
1–8, 2024.

[15] Y. Ding, C. Li, and H.-W. Park, “Kinodynamic Motion Planning
for Multi-Legged Robot Jumping via Mixed-Integer Convex
Program,” in 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), Oct. 2020, pp. 3998–4005.

[16] T. Corbères, C. Mastalli, W. Merkt, I. Havoutis, M. Fallon,
N. Mansard, T. Flayols, S. Vijayakumar, and S. Tonneau, “Per-
ceptive Locomotion through Whole-Body MPC and Optimal
Region Selection,” May 2023.

[17] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter,
“Perceptive Locomotion through Nonlinear Model Predictive
Control,” Aug. 2022.

[18] J.-M. Lien and N. M. Amato, “Approximate convex decompo-
sition of polygons,” Computational Geometry, vol. 35, no. 1,
pp. 100–123, Aug. 2006.

[19] D. Calvert, B. Mishra, S. McCrory, S. Bertrand, R. Griffin,
and J. Pratt, “A Fast, Autonomous, Bipedal Walking Behavior
over Rapid Regions,” in 2022 IEEE-RAS 21st International
Conference on Humanoid Robots (Humanoids), Nov. 2022, pp.
24–31.

[20] R. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, and
J. Pratt, Footstep Planning for Autonomous Walking Over Rough
Terrain, Jul. 2019.

[21] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada,
K. Yokoi, and H. Hirukawa, “Biped walking pattern generation
by using preview control of zero-moment point,” in 2003 IEEE
International Conference on Robotics and Automation (Cat.
No.03CH37422), vol. 2, 2003, pp. 1620–1626 vol.2.

[22] S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Taix,
and A. Del Prete, “SL1M: Sparse L1-norm Minimization for
contact planning on uneven terrain,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). Paris, France:
IEEE, May 2020, pp. 6604–6610.

[23] D. Song, P. Fernbach, T. Flayols, A. D. Prete, N. Mansard,
S. Tonneau, and Y. J. Kim, “Solving Footstep Planning as
a Feasibility Problem Using L1-Norm Minimization,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 5961–5968,
Jul. 2021.

[24] F. Risbourg, T. Corbères, P.-A. Léziart, T. Flayols, N. Mansard,
and S. Tonneau, “Real-time Footstep Planning and Control
of the Solo Quadruped Robot in 3D Environments,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct. 2022, pp. 12 950–12 956.

[25] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa,
“The 3D linear inverted pendulum mode: A simple modeling
for a biped walking pattern generation,” in Proceedings 2001
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), vol. 1, Oct. 2001, pp. 239–246 vol.1.

[26] X. Xiong and A. Ames, “3-D Underactuated Bipedal Walking
via H-LIP Based Gait Synthesis and Stepping Stabilization,”
IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2405–2425,

https://youtu.be/qk05xAqjyKQ
https://youtu.be/qk05xAqjyKQ
https://youtu.be/JK16KJXJxi4
https://youtu.be/JK16KJXJxi4

19

Aug. 2022.
[27] R. Griffin, J. Foster, S. Pasano, B. Shrewsbury, and S. Bertrand,

“Reachability Aware Capture Regions with Time Adjustment
and Cross-Over for Step Recovery,” in 2023 IEEE-RAS 22nd
International Conference on Humanoid Robots (Humanoids),
Dec. 2023, pp. 1–8.

[28] Y. Gong and J. Grizzle, “One-Step Ahead Prediction of Angular
Momentum about the Contact Point for Control of Bipedal
Locomotion: Validation in a LIP-inspired Controller,” in 2021
IEEE International Conference on Robotics and Automation
(ICRA), May 2021, pp. 2832–2838.

[29] O. Dosunmu-Ogunbi, A. Shrivastava, G. Gibson, and J. W.
Grizzle, “Stair Climbing using the Angular Momentum Linear
Inverted Pendulum Model and Model Predictive Control,” Jul.
2023.

[30] M. F. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. Mc-
Donald, and R. Tedrake, “Continuous humanoid locomotion
over uneven terrain using stereo fusion,” in 2015 IEEE-RAS 15th
International Conference on Humanoid Robots (Humanoids),
Nov. 2015, pp. 881–888.

[31] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic Terrain
Mapping for Mobile Robots With Uncertain Localization,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3019–
3026, Oct. 2018.

[32] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger,
and M. Hutter, “Elevation Mapping for Locomotion and Navi-
gation using GPU,” Apr. 2022.

[33] M. Fallon and M. Antone, “Plane Seg – Robustly and
Efficiently Extracting Contact Regions from Depth Data,”
2019. [Online]. Available: https://github.com/ori-drs/plane_seg

[34] D. Wisth, M. Camurri, and M. Fallon, “Vilens: Visual, inertial,
lidar, and leg odometry for all-terrain legged robots,” IEEE
Transactions on Robotics, vol. 39, no. 1, pp. 309–326, 2023.

[35] T. Bin, J. Yao, T. Lun Lam, and T. Zhang, “Real-Time Polygonal
Semantic Mapping for Humanoid Robot Stair Climbing,” in
2024 IEEE-RAS 23rd International Conference on Humanoid
Robots (Humanoids), Nov. 2024.

[36] S. McCrory, B. Mishra, R. Griffin, J. Pratt, and H. E.
Sevil, “Bipedal navigation planning over rough terrain using
traversability models,” in SoutheastCon 2023, 2023, pp. 89–95.

[37] F. Jenelten, R. Grandia, F. Farshidian, and M. Hutter, “TA-
MOLS: Terrain-Aware Motion Optimization for Legged Sys-
tems,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3395–
3413, Dec. 2022.

[38] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst,
“Blind Bipedal Stair Traversal via Sim-to-Real Reinforcement
Learning,” in Robotics: Science and Systems XVII. Robotics:
Science and Systems Foundation, Jul. 2021.

[39] H. Duan, A. Malik, J. Dao, A. Saxena, K. Green, J. Siekmann,
A. Fern, and J. Hurst, “Sim-to-Real Learning of Footstep-
Constrained Bipedal Dynamic Walking,” in 2022 International
Conference on Robotics and Automation (ICRA), May 2022, pp.
10 428–10 434.

[40] H. Duan, B. Pandit, M. S. Gadde, B. J. van Marum, J. Dao,
C. Kim, and A. Fern, “Learning vision-based bipedal locomo-
tion for challenging terrain,” arXiv preprint arXiv:2309.14594,
2023.

[41] F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep
tracking control,” Science Robotics, vol. 9, no. 86, p. eadh5401,
2024.

[42] S. Yu, N. Perera, D. Marew, and D. Kim, “Learning generic
and dynamic locomotion of humanoids across discrete terrains,”
arXiv preprint arXiv:2405.17227, 2024.

[43] Boston Dynamics, “Starting on the Right
Foot with Reinforcement Learning.” [On-
line]. Available: https://bostondynamics.com/blog/
starting-on-the-right-foot-with-reinforcement-learning/

[44] K. Ogata, Modern Control Engineering, 4th ed. USA: Prentice
Hall PTR, 2001.

[45] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-
dimensional bipedal walking control using divergent component
of motion,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013, pp. 2600–2607.

[46] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti,
“Walking Control Based on Step Timing Adaptation,” Mar.
2020.

[47] P. M. Wensing and D. E. Orin, “Generation of dynamic hu-
manoid behaviors through task-space control with conic opti-
mization,” in 2013 IEEE International Conference on Robotics
and Automation, May 2013, pp. 3103–3109.

[48] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training
algorithm for optimal margin classifiers,” in Proceedings of the
fifth annual workshop on Computational learning theory, 1992,
pp. 144–152.

[49] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight
Communications and Marshalling,” in 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Oct. 2010,
pp. 4057–4062.

[50] Russ Tedrake and the Drake Development Team, “Drake:
Model-Based Design and Verification for Robotics,” 2019.

[51] B. Acosta, “FCCQP: A Whole Body Control QP Solver with
Full Friction Cones.” [Online]. Available: https://github.com/
Brian-Acosta/fcc_qp/

[52] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle,
“Contact-aided invariant extended Kalman filtering for robot
state estimation,” The International Journal of Robotics Re-
search, vol. 39, no. 4, pp. 402–430, Mar. 2020.

[53] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-
cloud shape detection,” Computer Graphics Forum, vol. 26,
2007.

[54] M. Bertalmio, A. Bertozzi, and G. Sapiro, “Navier-stokes, fluid
dynamics, and image and video inpainting,” in Proceedings
of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, vol. 1, 2001, pp.
I–I.

APPENDIX

A. Lateral Reset Map Adjustment
Because Bds is decoupled in x and y, our hardware MPFC

implementation uses f(t) = 1 for the lateral ALIP state components,
corresponding to instantaneous weight transfer on touchdown. In this
case, (6) evaluates to

Bds = A−1(Ar − I)BCoP . (28)

This helps realize the desired step width by compensating for
systematic error in swing foot tracking. The robot consistently steps
wider than the commanded footstep position. Due to compliance and
backlash in Cassie’s hip roll joints, we cannot increase the swing-
foot PD gains beyond the values in Table VI. Assuming instantaneous
lateral weight transfer acts as a feed-forward correction by increasing
the model’s estimate of how much momentum will be absorbed by
a larger lateral footstep size. To calculate the final value of Bds, we
take the inner 2 × 2 submatrix, which corresponds to the coronal
plane, from (28), and the 4 corner values from (7), which correspond
to the sagittal plane.

B. Constructing the Desired-Velocity Subspace
Here we show how to derive (17). For this analysis, we ignore

the z component of each footstep, since it does not enter the ALIP
dynamics, and assume that pn ∈ R2. We will define the projection
matrices Π0 and Π1, and the offsets d0 and d1, and then for the
general case, we have that

Πn+2 = Πn

dn+2 = dn

https://github.com/ori-drs/plane_seg
https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/
https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/
https://github.com/Brian-Acosta/fcc_qp/
https://github.com/Brian-Acosta/fcc_qp/

20

We start by substituting (16b) into (16a) and solving for x0:

x0 = G(As2sBs2s −Bs2s)δp0 + 2Ts2sGBs2svdes (29)

where G = (I − A2
s2s)

−1. (29) defines the desired velocity
subspace as an offset based on vdes and the span of L0 =
G(As2s − I)Bs2s ∈ R4×2. We convert this to the desired form (17)
by left-multiplying with Π0, a projection matrix to the orthogonal
complement of the range of L0. Because Π0 maps L0δp0 to zero for
any δp0 by construction, this leaves us with

Π0x0 = 2Π0Ts2sGBs2svdes (30)

so d0(vdes) = 2Ts2sGBs2svdes. To find Π1, we use

x1 = As2sx0 +Bs2sδp0

∴ x1 = As2s(L0δp0 + d0) +Bs2sδp0

∴ x1 = (As2sL0 +B)δp0 +As2sd0

∴ L1 = As2sL0 +B, d1 = As2sd0 (31)

And Π1 is similarly constructed as a projection to span(L1)
⊥.

C. Whittling Algorithm Cut Solver
This section presents a solver for optimization over S1, which we

use to solve (27) quickly online. Given an optimization problem

minimize
x∈R2

f(x)

subject to ∥x∥22 = 1,

the associated first-order optimality conditions are

∥x∥22 = 1 (32)
∇f(x) + νx = 0 (33)

where ν ∈ R is a Lagrange multiplier for the unit-norm constraint.
To optimize over the unit circle, we rotate x in the direction which
decreases the cost until ∇f(x) is parallel to x, which satisfies the
optimality conditions. Our solver is summarized in Algorithm 2.

Algorithm 2 MakeCut Solver

Require: Cost function f , Initial guess x ∈ S1, Optimality
Tolerance ϵ, Line search parameters α > 0, β ∈ (0, 1)
procedure SOLVE(f , x, ϵ)

θ ←∞
while |θ| > ϵ do

θ ← (∇f(x)− x⟨∇f(x), x⟩)× x
t← α/|θ|
while f(Rotate(θt, x)) > f(x) do t← βt

x← Rotate(θt, x)
return x

where

Rotate(θ, x) =
[
cos θ − sin θ
sin θ cos θ

]
x.

The θ update finds the direction to rotate x by considering the
component of ∇f orthogonal to x, using the cross product with x to
convert this direction into a scalar rotation angle. We then perform
a line search, starting with a fixed initial step size α for improved
convergence speed. As an implementation note, we re-normalize x
at each iteration to avoid drift in the unit-norm constraint.

D. Controller and Perception Stack Parameters
The following tables give the parameters used for each component

of our stack. Diagonal matrices are represented as d[· · ·], where
the arguments to d represent the entries on the diagonal of the
matrix. While we did not extensively tune MPFC costs, we found
it worked best to set QN at least 100× larger than Q for the position
coordinates. This avoided short-sighted behavior when walking over
edges, and could maybe be reduced for longer planning horizons.

Compared to hardware, our simulation experiments feature in-
creased MPFC state costs and OSC PD gains, and decreased S3 res-
olution and hysteresis. These differences showcase the full potential
of our method with more-precise swing-foot tracking. We switch the
inpainting approach from Navier-Stokes (NS) to Least-Neighboring-
Value (LNV) to align with the discrete terrain tested in sim.

TABLE V: MPFC Parameters

Symbol Meaning Hardware Simulation
N MPFC Horizon 2 steps 2 steps

tmin Min. SS duration 0.27 s 0.27 s
tmax Max. SS duration 0.33 s 0.33 s
H ALIP height 0.85 m 0.85 m
Tss Nominal SS duration 0.3 s 0.3 s
Tds DS duration 0.1 s 0.1 s
wT Time weight 100 100
l Step width 0.2 m 0.15 m

wu Ankle torque weight 0.01 0.01
umax Max. ankle torque 22 Nm 22 Nm

QN Terminal state cost d[100, 100,
1, 1]

d[1000, 1000,
20, 20]

Q Runnning state cost d[0.001, 0.1,
0.01, 0.001]

d[10, 10, 5, 5]

R Running step size cost d[25, 25, 0] d[25, 25, 0]
– CoM soft pos. limits ± [0.35, 0.35] m ± [0.4, 0.4] m
– CoM soft vel. limits ± [2.5, 1.5] m/s ± [2.5, 1.5] m/s
– Soft constraint cost 1000 1000

TABLE VI: OSC Gains (Hardware)

OSC Objective W Kp Kd
Toe joint angle 1 1500 10
Hip yaw angle 2 40 2
CoM [x, y, z] [0, 0, 10] [0, 0, 100] [0, 0, 6]
Pelvis [roll, pitch, yaw] [2, 4, 0.02] [200, 200, 0] [10, 10, 4]
Swing Foot [x, y, z] [4, 4, 2] [220, 180, 180] [6, 5.5, 5.5]
Ankle Torque 10 – –

TABLE VII: OSC Gains (Simulation)

OSC Objective W Kp Kd
Toe joint angle 1 1500 10
Hip yaw angle 2 100 4
CoM [x, y, z] [0, 0, 10] [0, 0, 80] [0, 0, 10]
Pelvis [roll, pitch, yaw] [2, 4, 0.02] [200, 200, 0] [10, 10, 10]
Swing Foot [x, y, z] [4, 4, 2] [400, 400, 400] [20, 20, 25]
Ankle Torque 10 – –

TABLE VIII: Perception Stack Parameters

Symbol Meaning Hardware Simulation
Elevation Mapping

– Map Size 3× 3 m 2.5× 2.5 m
– Map Resolution 0.03 m 0.025 m

S3
khyst Safety Hysteresis 0.6 0.4
ksafe Safety Threshold 0.7 0.7

– Safety Margin Kernel Size 4 px 4 px
σLoG LoG Standard Dev. for ccurve 2 px 2 px
αc ccurve scaling parameter 5 5
– cinc kernel size 5 px 5 px
– Inpainting NS LNV

Convex Decomposition
d ACD Concavity Limit 0.25 m 0.25 m

	Introduction
	Related Work
	Footstep Planning over Rough Terrain
	Mixed-Integer Footstep Planning

	Footstep Control for Underactauted Bipeds
	Safe Terrain Estimation for Legged Locomotion
	Reinforcement Learning for Legged Locomotion

	Preliminaries
	ALIP model
	Hybrid ALIP Model Based on Foot Placement
	Step-to-Step ALIP Dynamics
	Step Timing Adaptation
	Operational Space Control

	Mixed Integer Footstep Control
	Cost Design
	Dynamics Constraints
	Foothold Constraints
	CoM, Timing, Input, and Footstep Limits

	Output Synthesis For Operational Space Control
	Center of Mass Reference
	Swing Foot Reference
	Adaptive Swing Foot Clearance
	Swing foot Planning QP

	Constant References
	Ankle Torque

	Stable Steppability Segmentation and Convex Decomposition
	Stable Steppability Segmentation
	Curvature Safety Criterion
	Inclination Safety Criterion
	Combining Safety Criteria

	Convex Planar Decomposition

	Experimental Setup
	RealSense D455 Depth Camera
	Robot-Centric Elevation Mapping

	Results
	Simulation Experiments
	Step-Timing Optimization

	Walking on Discontinuous Terrains
	Controller Solve Times
	Perception Stack Evaluation
	Computation Time
	S3 Temporal Consistency
	Convex Polygon Temporal Consistency
	S3 Hysteresis and Moving Obstacles

	Summary of Capabilities

	Discussion
	Implementation Details
	Inpainting
	ALIP State Estimation
	Foostep Height Lookup

	Limitations, Failure Modes, and Future Work
	Systems Limitations
	Algorithmic Limitations
	Fundamental Limitations

	Conclusion And Future Work
	Appendix
	Lateral Reset Map Adjustment
	Constructing the Desired-Velocity Subspace
	Whittling Algorithm Cut Solver
	Controller and Perception Stack Parameters

