brianacosta.me · bjacosta[at] seas [dot] upenn [dot] edu

SKILLS

Tools and Frameworks: Drake, Eigen, OpenCV, PCL, Pybind11, LCM, ROS, Bazel	
Robotics and Controls : Humanoid and Legged Robot Control, Motion Planning, Model-Pre Whole-Body Control, Convex Optimization, Perception, Trajectory Optimization, Multibody I Kinematics	,
Experience	
 UPenn GRASP Lab (General Robotics, Automation, Sensing & Perception Lab) Ph.D. Candidate Built a perception and control stack in C++ for dynamic walking on rough terrain with the biped Developed a real-time mixed integer footstep planner for bipedal walking on rough terrain Developed a temporally stable terrain segmentation algorithm for vision-based reactive footstep p Sole maintainer of Penn's Cassie robot since 2023 Contributed to the dairlib and Drake open source robotics libraries 	
 Intuitive Surgical Systems Analyst Intern Developed, implemented, and validated integration tests and analysis tools for robot behaviors to da-Vinci minimally invasive robotic surgery platform 	Summer 2023 Sunnyvale, CA support the

Programming: C++, Python, MATLAB/Simulink, C, Git, Linux

John Deere

Controls Engineering Intern

Summer 2020 Dubuque IA (Remote due to COVID-19)

- Automated mass property validation of CAD models used for rigid body dynamics simulations
- Designed a fan drive controller in Simulink which was successfully deployed on a prototype construction vehicle

John Deere	Summer 2019
Product Engineering Intern	Fuquay Varina, NC
McNeilus Truck and Manufacturing Mechanical Engineering Intern	Summer 2018 Dodge Center, MN

EDUCATION

University of Pennsylvania	Philadelphia, PA
Ph.D. Mechanical Engineering and Applied Mechanics NSF Graduate Research Fellowsh	ip Spring 2025
University of Pennsylvania	Philadelphia, PA
M.S.E Robotics	December 2024
Purdue University	West Lafayette, IN
B.S. Mechanical Engineering National Merit Scholarship, Purdue Presidential Scholarship	May 2020

PUBLICATIONS

- Brian Acosta and Michael Posa. Bipedal Walking on Constrained Footholds with MPC Footstep Control. IEEE-RAS International Conference on Humanoid Robotics, 2023.
- Brian Acosta*, William Yang*, and Michael Posa. Validating Robotics Simulators On Real World Impacts. IEEE Robotics and Automation Letters, 2022.