FCCQP* A Whole Body Control QP Solver with
Full Friction Cones

Brian Acosta

May 4, 2024

1 Introduction

Optimization based control architectures for dynamic legged robots have con-
verged to the “QP approach” of formulating reactive controllers as quadratic
programs (QPs). The decision variables in these QPs include the generalized
accelerations, inputs, contact forces, and other constraint forces of a Lagrangian
dynamics model of the robot [5]. The costs encode information such as desired
task-space accelerations or contact forces. Often, the only inequality constraints
in the QP are input limits and friction cone constraints, leading to QPs of the

form .

1
minimize ixTQx +blz+c
x

(1a)
subject to Aeqx = beg (1b)
Ac €F (1c)

(1d)

bléngu

Here, x = [i}T ul)\g)\CT]T is a vector of the stacked generalized ac-
celerations, inputs, holonomic constraint forces, and contact forces, and z =
[i}T ul)\g]T contains all variables except the contact forces. Ay and beq
specify dynamics constraints, holonomic constraints (such as loop closures and
fixed joints), and contact constraints. F is the set of friction cones, and b; and
b, are bounds on the decision variablegl]

Usually, is solved with general purpose QP solvers, requiring the fric-
tion cone constraints to be approximated by pyramidal linear constraints, and
ignoring advantageous problem structure.

“github.com/Brian-Acosta/fcc_qgp
1Usually all variables except v are unbounded by b; and by, and contact forces are bounded
only by friction cones

github.com/Brian-Acosta/fcc_qp

One might notice that both the bounds on z and the Lorentz cone con-
straint defining the full friction cone have feasible sets which are, informally,
“easy to project to”, and decoupled from other inequality constraints. This
structure allows a vanilla implementation of the Alternating Direction Method
of Multipliers (ADMM) to solve quickly and robustly. This motivates the
development of FCCQP (Friction Cone Constrained QP), a QP solver specif-
ically for solving convex Lorentz-Cone-Constrained QPs of the form using
ADMM.

2 ADMM For Convex Optimization [2]

Before formulating our solver, we will briefly review the recipe for solving a
convex optimization problem with ADMM. The generic convex optimization
problem

minmig(lzize f(zx) (2)

can be transformed into an equivalent problem amenable to ADMM by in-
troducing a slack variable, y:

minimize f(z)+ Ic(y) (3a)
aj7y
subject to x =y (3b)

where I¢(y) is the indicator function

Ie(y) = {20 Ve ()

The scaled form of the ADMM iterations are then given by:

zpr = argmin (£(2) + 2 o = o+ well3) (52)
Yr+1 = Pe (T4 + wi) (5b)
Wey1 = Wk + Thy1 — Yhtl- (5¢)

Where P¢(v) is the projection of v onto C, is the primal update,
is the slack update, and is the dual update.

3 Solving with ADMM

We can solve via ADMM by splitting it into an equality constrained QP
(the primal update) and independent projections onto the variable bounds and
friction cone constraints (the slack update). More explicitly,

. 1
ZTpy1 = arg min ixTQx +bolx + g lx —Tr + wk||§ (6a)
subject to Acq® = beg
Aot = Pr(Ae g1 + wa,) (6b)
Zk:-i-l = Pbounds(zk+l + wz,k:) (60)
Wi41 = Wk + Tht1 — Tht1- (6d)
Where Z and . are slack variables for z and \., T = [ET Xﬂ , and
w=[wl wl]"

The primal update can be computed by solving the KKT system [3],

Q AL [z] _[-b
2= (7)
where Q = Q + pI and b= b — p(T), — wy,).
The slack update projections are handled individually for each contact force

in A., and element-wise for the box constraint on z. The projection to a friction
cone with coefficient of friction p is given by

A, HAz > ||/\:cy||
Pr.(A) =10, Az < =il Aayll (8)
Ao

_(_n u :
ie? |0 = (ppAe o Ae: 1), otherwise
and the box constraint projection is given by

Prounds(v) = min(max (v, b;), by,) 9)

where the min and max are computed element-wise. We can initialize z and
T to the solution of with only equality constraints, or we can warm start the
solver with the previous solution, resulting in algorithm

Algorithm 1 FCCQP ADMM Implementation
Input: Problem Data @, b, Acg, beg, F, by, by, Hyper-parameters m, ¢, p

Initialization:
*
o = Tg = Lprew warmstart
argmin 27 Qz +bTx st. Aegx = bey otherwise

*
wo = Wpre, Warmstart
0 otherwise

for k=0...m do
Update xxy1 by solving (7]
Update Xc,k+1,§k+1 with, (6c)
Update duals
if ||zg+1 — Tr41]] < € then
break
end if

end for
Output: Final solution z*.

4 Operational Space Control Example

In this section, we use FCCQP to solve an Operational Space Control QP for the
underactuated biped Cassie [I] [6]. In this case, the operational space commands
are to realize a linear-inverted pendulum style walking controller, similar to [4].
Experiments are conducted on hardware.

For task space PD commands §emd = Jdes + K p(Ydes — Y) + Ka(Ydes — ¥), the
goal of OSC is to find feasible inputs, u, such that the tasks space accelerations
= Jy0+ jyv match the commands as closely as possible. This yields a QP in

the form ,

N

c e ~T =~ 2) 2
minjmize D i Wiy + llully + 19l + lleliy (10a)
subject to M0+ C = Bu+ JI A\ + JX X\ (10b)
Jno = —Jyu (10c)
Jebo+¢e=—Juw (10d)
Ac €F (10e)
Umin S u S Umazx- (10f)
The holonomic constraint J,o = —Jxv represents Cassie’s four-bar linkages

and fixed joint constraints to model Cassie’s leaf spring springs, and the task
space acceleration errors are §i; = Jemd — (Jy,i¥ + Jy,iv). The contact constraint
is treated as a soft constraint by the introduction of a slack variable € to ensure

the problem is always feasible.

0OSC QP Solve Time

0.0008

Left Stance (LS) — FCCQP
Right Stance (RS) —— 0sQP
0.0007 Double Support Post Left (DSPL) ---- 2 kHz

Double Support Post Right (DSPR)

0.0006 4

0.0005

0.0004 4

0.0003 4
0.0002 4
0.0001
0.0000 | | I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Timestamp (s)
Knee Effort Solution
Left Stance (LS) ---- Knee Torque (left) - FCCQP
125 Right Stance (RS) --== Knee Torque (right) - FCCQP
Double Support Post Left (DSPL) —— Knee Torque (left) - OSQP

Double Support Post Right (DSPR) —— Knee Torque (right) - OSQP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Timestamp (s)

Figure 1: Top: FCCQP and OSQP solve times during Cassie walking exper-
iments. Bottom: Knee torque solutions from the 2 solvers are similar, even
during separate runs on real hardware. Both solvers are solving the same state-
dependent QP, and are tuned to be as fast as possible while allowing stable
standing and walking. Solver parameters are given in table [I] and table 2]

Parameter Value
P 5e-5
€ le-4
max. iter. 15
warm start yes
linear system solver | Eigen LDLT

Table 1: FCCQP Hyper parameters for walking experiments

p le-4

€abs,rel le-7

€ing (Primal and dual) | le-5
max. iter. 100
linear system solver qdldl
p adaptation Yes
solution polishing Yes
warm start Yes

Table 2: OSQP Hyper parameters for walking experiments

5 Discussion and Future Work

5.1 Early Termination and Accuracy

One may notice that we demand lower accuracy and allow fewer iterations for
FCCQP than for OSQP. This is because FCCQP enforces equality constraints
like dynamics and contact constraints at every ADMM iterate. Only friction
constraints and torque limits are enforced iteratively using ADMM. In the ab-
sence of extremely dynamic robot motions, FCCQP quickly converges to near-
feasibility in these respects, but can take a long time to achieve high accuracy.
Therefore, we can terminate early or with low accuracy and be relatively con-
fident that the solution will be acceptable for the actual behavior of the robot.
We cannot do the same with OSQP, as OSQP enforces all constraints using
ADMM, so the dynamics or contact constraints may not be satisfied in the case
of very early termination.

5.2 Linear Solve Step

The vast majority of the runtime of FCCQP lies in factorizing KKT matrices,
one to solve the initial equality constrained QP if warm starting is disabled, and
one to solve the ADMM primal update problems. Once the KKT matrix @ is
factorized, that factorization can be re-used for the remaining ADMM iterations.
If the equality constraints are not full rank, a rank revealing decomposition must
be used, which can multiply the solve time over 4x compared to a Cholesky
decomposition.

References

1]

3]

[4]

T. Apgar, P. Clary, K. Green, A. Fern, and J. Hurst. Fast Online Trajec-
tory Optimization for the Bipedal Robot Cassie. In Robotics: Science and
Systems XIV. Robotics: Science and Systems Foundation, June 2018.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed op-
timization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends@® in Machine Learning, 3(1):1-122,
2011.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

Y. Gong and J. Grizzle. One-Step Ahead Prediction of Angular Momentum
about the Contact Point for Control of Bipedal Locomotion: Validation in a
LIP-inspired Controller. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 2832-2838, May 2021.

P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. D. Prete.
Optimization-Based Control for Dynamic Legged Robots. IEEE Transac-
tions on Robotics, 40:43-63, 2024. Conference Name: IEEE Transactions on
Robotics.

W. Yang and M. Posa. Impact Invariant Control with Applications to
Bipedal Locomotion. arXiv:2103.06907 [cs], Mar. 2021. arXiv: 2103.06907.

	Introduction
	ADMM For Convex Optimization boydadmm
	Solving (1) with ADMM
	Operational Space Control Example
	Discussion and Future Work
	Early Termination and Accuracy
	Linear Solve Step

